奇異攝動延遲積分微分方程的Pouzet-Runge-Kutta方法.pdf_第1頁
已閱讀1頁,還剩53頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、華中科技大學(xué)碩士學(xué)位論文奇異攝動延遲積分微分方程的Pouzet-Runge-Kutta方法姓名:趙飛申請學(xué)位級別:碩士專業(yè):計算數(shù)學(xué)指導(dǎo)教師:張誠堅20061025AbstractDelay differential equations(DDEs) often appear in auto-control, biology, physics,aerospace and economics.Singular perturbation de

2、lay problem(DSPPs) and delay dif-ferential algebraic problem are a special subproblem of delay differential equation.Fordiscrete type singularly perturbed delay problem, Gun SiQing had studied error behaviorabout Runge-K

3、utta methods and linear multi-step methods.Tian HongJiong had proved thesingularly perturbed delay problem was exponential stability,and gave out the expansionof true solution.Up to now,both abroad and home have no resul

4、ts about numerical solu-tion of singular perturbation delay problem.Moreover for singularly perturbed problem,because the solution near the origin is decay very fast, so studying the convergence ofnumerical solution is v

5、ery important.Therefor,In my paper we study the convergence ofPouzet-Runge-Kutta methods for singular perturbation delay integro-differential problem.At the fi rst chapter,we review the history of numerical solution for

6、delay differentialequation.At the second chapter,we discuss the ε-expansion of single variable and singlestiffness singular perturbation delay differential-integral problem.At the third chapter,westudy the multi-stiffnes

7、s singular perturbation delay differential-integral problem,and getthe global error of Pouzet-Runge-Kutta method for that problem.In the end,numericalexperiments can confi rm the results.At the forth chapter,we study the

8、 two variables andsingle stiffness singular perturbation delay differential-integral problem,and get the globalerror of Pouzet-Runge-Kutta method for that problem.Key words:Delay-integro-differential singularly perturbed

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論