已閱讀1頁(yè),還剩22頁(yè)未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、設(shè)G為有限群,它的非交換圖▽(G)的定義為:▽(G)的頂點(diǎn)集V(G)=G\Z(G),兩個(gè)頂點(diǎn)x與y由一條邊連接當(dāng)且僅當(dāng)[x,y]≠1,記作x~y.與頂點(diǎn)g相連的邊數(shù)稱為g的度數(shù),記作deg(g).顯然已知群G,可以容易確定▽(G)的性質(zhì),但是給定非交換圖▽(G)要確定群G是不容易的.例如▽(D8)≌▽(Q8),但D8(≌)8.
本文主要討論Sylow p-子群循環(huán)的10pn(p>5)階非交換群與其非交換圖之間的聯(lián)系.在第二章里
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 關(guān)于群的非交換圖.pdf
- 有限p群的非交換圖.pdf
- 19550.p5階群的非交換圖的團(tuán)數(shù)
- 非交換圖對(duì)有限群結(jié)構(gòu)的影響.pdf
- pn階初等交換群的pn-1階自同構(gòu)的性質(zhì)綜述.pdf
- 有限幾乎單群的OD-刻畫(huà)與非交換圖刻畫(huà).pdf
- 關(guān)于pq階非交換群集合積的最小基數(shù)的一些結(jié)果.pdf
- 25149.2階子群均共軛置換的一些非交換有限群
- 某些Frobenius群的特征標(biāo)問(wèn)題及10000階以內(nèi)非交換單群的特征標(biāo)分塊.pdf
- A3群的非交換子群的個(gè)數(shù).pdf
- 非交換子群個(gè)數(shù)較少的有限p群.pdf
- 28511.幾個(gè)有限環(huán)的中心圖和交換圖
- 非交換子群具有某種正規(guī)性的有限群.pdf
- 非交換子群的中心都相等的有限2群.pdf
- 非交換子群中心均相等的有限p群
- 有限非交換p群的極小人生成數(shù).pdf
- 有限p群的非內(nèi)交換極大子群的交.pdf
- 非交換子群均自中心化的有限3群
- At群的內(nèi)交換子群的個(gè)數(shù).pdf
- 交換子群與群的結(jié)構(gòu)研究.pdf
評(píng)論
0/150
提交評(píng)論