版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、外文資料外文資料EdgeFeatureExtractionBasedonDigitalImageProcessingTechniquesI.INTRODUCTIONTheedgeisasetofthosepixelswhosegreyhavestepchangerooftopchangeitexistsbetweenobjectbackgroundobjectobjectregionregionbetweenclementclement
2、.Edgealwaysindwellsintwoneighbingareashavingdifferentgreylevel.Itistheresultofgreylevelbeingdiscontinuous.Edgedetectionisakindofmethodofimagesegmentationbasedonrangenoncontinuity.Imageedgedetectionisoneofthebasalcontents
3、intheimageprocessinganalysisalsoisakindofissueswhichareunabletoberesolvedcompletelysofar.Whenimageisacquiredthefactssuchastheprojectionmixaberrancenoiseareproduced.Thesefactsbringonimagefeaturesblurdisttionconsequentlyit
4、isverydifficulttoextractimagefeature.Meoverduetosuchfactsitisalsodifficulttodetectedge.Themethodofimageedgeoutlineacteristicsdetectionextractionhasbeenresearchhotinthedomainofimageprocessinganalysistechnique.Edgefeaturee
5、xtractionhasbeenappliedinmanyareaswidely.Thispapermainlydiscussesaboutadvantagesdisadvantagesofseveraledgedetectionoperatsappliedinthecableinsulationparametermeasurement.Indertogainmelegibleimageoutlinefirstlytheacquired
6、imageisfiltereddenoised.Intheprocessofdenoisingwavelettransfmationisused.thendifferentoperatsareappliedtodetectedgeincludingDifferentialoperatLogoperatCannyoperatBinarymphologyoperat.Finallytheedgepixelsofimageareconnect
7、edusingthemethodofbderingclosed.Thenaclearcompleteimageoutlinewillbeobtained.II.IMAGEDENOISINGAsweallknowtheactualgatheredimagescontainnoisesintheprocessoffmationtransmissionreceptionprocessing.Noisesdeteriatethequalityo
8、ftheimage.Theymakeimageblur.manyimptantfeaturesarecoveredup.Thisbringslotsofdifficultiestotheanalysis.Therefethemainpurposeistoremovenoisesoftheimageinthestageofpretreatment.Thetraditionaldenoisingmethodistheuseofalowpas
9、sbpassfiltertodenoise.Itsshtcomingisthatthesignalisblurredwhennoisesareremoved.Thereisirreconcilablecontradictionbetweenremovingnoiseedgemaintenance.Yetwaveletanalysishasbeenprovedtobeapowerfultoolfimageprocessing.Becaus
10、eWaveletdenoisingusesadifferentfrequencybpassfiltersonthesignalfiltering.Itremovesthecoefficientsofsomescaleswhichmainlyreflectthenoisefrequency.Thenthecoefficientofeveryremainingscaleisintegratedfinversetransfmsothatnoi
11、secanbesuppressedwell.Sowaveletanalysiscanbewidelyusedinmanyuseofedgeenhancementoperatfirstly.Thenwedefinethe`edgeintensityofpixelsextractthesetofedgepointsthroughsettingthreshold.Butthebderlinedetectedmayproduceinterrup
12、tionasaresultofexistingnoiseimagedark.Thusedgedetectioncontainsthefollowingtwoparts:1)Usingedgeoperatstheedgepointssetareextracted.2)Someedgepointsintheedgepointssetareremovedanumberofedgepointsarefilledintheedgepointsse
13、t.Thentheobtainedareconnectedtobealine.ThecommonusedoperatsaretheDifferentialLogCannyoperatsBinarymphologyetc.A.DifferentialoperatDifferentialoperatcanoutstgreychange.Therearesomepointswheregreychangeisbigger.thevaluecal
14、culatedinthosepointsishigherapplyingderivativeoperat.Sothesedifferentialvaluesmayberegardedasrelevant`edgeintensitygatherthepointssetoftheedgethroughsettingthresholdsfthesedifferentialvalues.Firstderivativeisthesimplestd
15、ifferentialcoefficient.Supposethattheimageisf(xy)itsoperatisthefirstderpartialderivative.Theyrepresent?f?x?f?ytherateofchangethatthegrayfisinthedirectionofxy.Yetthegrayrateofαchangeinthedirectionofaisshownintheequation(1
16、):1)?f?α=?f?xcosα?f?ysinα(Underconsecutivecircumstancesthedifferentialofthefunctionisdf=?f?xdx?f?y.Thedirectionderivativeoffunctionf(xy)hasamaximumatacertainpoint.dythedirectionofthispointisarctan[].Themaximumofdirection
17、derivativeis?f?y?f?x.Thevectwiththisdirectionmodulusiscalledasthegradientof(?f?x)2(?f?y)2thefunctionf,thatis.Sothegradientmodulusoperatisdesigned?f(xy)=(?f?x?f?x)intheequation(2).(2)G[f(xy)](?f?x)2(?f?y)2Fthedigitalimage
18、thegradienttemplateoperatisdesignedas:(3)DifferentialoperatmostlyincludesRobotsoperatSobeloperat.(1)RobertsoperatRobotsoperatisakindofthemostsimpleoperatwhichmakesuseofpartialdifferenceoperattolookfedge.Itseffectisthebes
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯----基于數(shù)字圖像處理技術(shù)的邊緣特征提取
- 外文翻譯----基于數(shù)字圖像處理技術(shù)的邊緣特征提取
- 外文翻譯----基于數(shù)字圖像處理技術(shù)的邊緣特征提取
- 外文翻譯----基于數(shù)字圖像處理技術(shù)的邊緣特征提取.docx
- 外文翻譯----基于數(shù)字圖像處理技術(shù)的邊緣特征提取.docx
- 數(shù)字圖像處理與邊緣檢測-畢業(yè)論文外文翻譯
- 基于數(shù)字圖像處理技術(shù)的邊緣特征提取畢業(yè)課程設(shè)計外文文獻翻譯、中英文翻譯、外文翻譯
- 基于數(shù)字圖像處理技術(shù)的邊緣特征提取畢業(yè)課程設(shè)計外文文獻翻譯、中英文翻譯、外文翻譯
- 畢業(yè)論文外文翻譯-數(shù)字圖像處理
- 數(shù)字圖像處理與邊緣檢測論文外文翻譯
- 網(wǎng)絡(luò)工程畢業(yè)論文外文翻譯-數(shù)字圖像處理與邊緣檢測
- 基于數(shù)字圖像處理的棉花群體特征提取.pdf
- 畢業(yè)論文外文翻譯-數(shù)字圖像處理方法的研究
- 外文翻譯--數(shù)字圖像處理和邊緣檢測
- 外文翻譯----數(shù)字圖像處理與邊緣檢測
- 數(shù)字圖像點特征及邊緣特征提取方法的研究與實現(xiàn).pdf
- 數(shù)字圖像處理外文翻譯--- 數(shù)字圖像處理
- 基于matlab的數(shù)字圖像處理畢業(yè)論文
- 畢業(yè)論文---數(shù)字圖像處理
評論
0/150
提交評論