版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、LearningMultipleLayersofFeaturesfromTinyImagesAlexKrizhevskyApril82009Contents1Preliminaries31.1Introduction............................................31.2Naturalimages..........................................31.2.1The
2、dataset........................................31.2.2Properties.........................................31.3TheZCAwhiteningtransfmation...............................51.3.1Motivation......................................
3、..51.3.2Whiteninglters.....................................51.3.3Whiteneddata......................................61.4RBMs...............................................61.4.1TrainingRBMs................................
4、......101.4.2DeepBeliefwks(DBNs)..............................111.4.3GaussianBernoulliRBMs................................121.4.3.1TrainingGaussianBernoulliRBMs.....................141.4.3.2Learningvisiblevariances......
5、.....................141.4.3.3Visualizinglters...............................161.4.4Measuringperfmance.................................161.5Feedfwardneuralwks..................................162Learningagenerativemodelo
6、fimages172.1Motivation............................................172.2Previouswk...........................................172.3Initialattempts..........................................172.4Deletingdirectionsofvariance.
7、.................................172.5Trainingonpatchesofimages..................................202.5.1MergingRBMstrainedonpatches...........................202.6TrainingRBMson32x32images................................
8、232.7Learningvisiblestarddeviations..............................262.8Secondlayeroffeatures.....................................263Objectclassicationexperiments323.1Thelabeledsubset.......................................
9、.323.2Methods..............................................334ParallelizingthetrainingofRBMs364.1Introduction............................................364.2Thealgithm...........................................364.3Impl
10、ementation..........................................384.3.1Writerthreads......................................394.3.2Readerthreads......................................394.4Results........................................
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- Multiple Intelligences in College English Teaching and Learning.pdf
- The Instability of Meaning and Multiple Versions of Translation——from the Perspective of Deconstruction.pdf
- On Translation of Cultural Images from the Perspective of Relevance Theory and Intertextuality.pdf
- a study of college english mobile learning from the perspective of eco―linguistics
- Enrichment and Reproduction of Images in Translating Poems--from the Perspective of Relevance Theory_22534.pdf
- On English Learning in Transition from Junior to Senior middle school.pdf
- On Representation of the Stylistic Features in the Translation of the ProsE-poeM-from the Perspective of Functional Stylistics_20572.pdf
- 2016版-learning latin the ancient way latin textbooks from the ancient world
- Input of Non--English Majors from the Perspective of Generative Learning Theory.pdf
- Problems Encountered by Traninees of Interpreting and Tentative SolutionS-From the Perspective of Reflective Learning.pdf
- images.rar
- features of academic writing
- images.zip
- images.rar
- images.rar
- images.rar
- cognitive radio communication system based on multiple―input multiple―output (mimo) technology
- steganography techniques for digital images
- multiple intelligences and emotional intelligence
- Behaviors Modeling and Analysis of Big Data from Web Apps Using Machine Learning and Deep Rnn Techniques.pdf
評(píng)論
0/150
提交評(píng)論