版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、(用作檔案留存的學位論文才需填寫此合格證明)摘要本文研究了一類滿足正則性條件的富足半群,以及本原左0一ample半群的結(jié)構(gòu)全文分兩章第一章引入了一類滿足正則性條件的富足半群,即S是一個富足半群,其冪等元集生成的子半群(E(S))是正則子半群,且S中的每一個口一類恰包含(E(S))中的一個D一類,稱為UD一半群以Grillet公理化形式的正則一類似群胚定義,以及使得該群胚成為半群的條件為基礎(chǔ),通過建立相容性,正規(guī)性和富足性條件獲得UD一半
2、群另一方面,設(shè)S是一個UD一半群,令如和人D。分別表示D一類D4中的所有C一類和冗一類構(gòu)成的集合,AD表示D一類D中的一個可消幺半群。記T=uIDADAD。,定義r上的運算(i,g,A)◇,h,p)=(igm,文,9。gmA,J危。%^,p,u危p),證明了T是一個UD一半群,且S與T同構(gòu)第二章引入了本原左0一ample半群,即半群S中的每一個冗。一類都含有冪等元,冪等元是本原可交換的,以及滿足對任意的a∈S,e∈E(s),有ae=(a
3、e)ta首先定義了。一三A塊矩陣半群,證明了這類半群是本原左0一ample半群。另一方面,設(shè)S是一個本原左。一ample半群,以冪等元集E(S)和集合[尥,=es,:e,,∈E(s))為基本構(gòu)件,令。一LABM(尥,,E(s))=。,,呂(s)尥,e),),其乘法為cs。,e,,,ct。,夕,危,=0。s7。。。,e,h,,;蘭耋:,通過驗證證明To—LABM(Me,,E(S))是一個。一LA塊矩陣半群,而且半群S與半群。一LABM(M
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 兩類右富足半群.pdf
- 20544.兩類半群結(jié)構(gòu)
- 兩類wrpp半群的特征和結(jié)構(gòu).pdf
- 關(guān)于兩類矩陣半群.pdf
- 兩類右pp半群.pdf
- 關(guān)于變換半群的兩類子半群的若干性質(zhì).pdf
- 富足半群.pdf
- 關(guān)于兩類特殊序半群的研究.pdf
- 一類非富足全變換半群.pdf
- 正則半群的斷面研究和超富足半群的結(jié)構(gòu).pdf
- 兩類F-型左pp半群.pdf
- 有限群與兩類關(guān)聯(lián)結(jié)構(gòu)
- 富足半群的若干研究.pdf
- I-,n-上的兩類子半群.pdf
- LU=-富足半群的性質(zhì)和結(jié)構(gòu)的研究.pdf
- 具有子半群系的富足半群.pdf
- 34395.嚴格富足半群
- 關(guān)于富足半群和模糊正則半群的研究.pdf
- 有限群與兩類關(guān)聯(lián)結(jié)構(gòu).pdf
- 兩類半環(huán)的研究.pdf
評論
0/150
提交評論