2023年全國(guó)碩士研究生考試考研英語(yǔ)一試題真題(含答案詳解+作文范文)_第1頁(yè)
已閱讀1頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  附錄3 中文譯文</b></p><p>  永磁同步電動(dòng)機(jī)的矢量控制——綜述</p><p>  摘要——在高性能伺服應(yīng)用中,最理想的方法莫過于不使用運(yùn)動(dòng)狀態(tài)傳感器的快速精確的轉(zhuǎn)矩控制。結(jié)合直接轉(zhuǎn)矩控制器的永磁同步電動(dòng)機(jī)使用計(jì)劃為實(shí)現(xiàn)這一目標(biāo)提供了許多機(jī)會(huì)。最近,已經(jīng)有一些作者提出了可能實(shí)現(xiàn)的永磁同步電動(dòng)機(jī)的直接轉(zhuǎn)矩控制。本文給出了一些

2、概述,解釋了永磁同步電動(dòng)機(jī)的基本原則。討論了內(nèi)嵌式和面貼式的拓?fù)浣Y(jié)構(gòu)和算法描述。在這些控制計(jì)劃需要估計(jì)定子磁鏈和初始轉(zhuǎn)子位置。本文也討論了實(shí)現(xiàn)這些估計(jì)的技術(shù)。本文的主要目標(biāo)是對(duì)已經(jīng)取得的成果給出一個(gè)大綱,同時(shí)為進(jìn)一步研究確定興趣點(diǎn)。</p><p><b>  1 緒論</b></p><p>  在各種工業(yè)應(yīng)用中,如工業(yè)機(jī)器人和機(jī)床,永磁同步電動(dòng)機(jī)驅(qū)動(dòng)器已經(jīng)取代了傳

3、統(tǒng)的直流電機(jī)和異步電機(jī)驅(qū)動(dòng)器。永磁同步電動(dòng)機(jī)的優(yōu)點(diǎn)有高轉(zhuǎn)矩/慣量比,高效率,高功率密度和高可靠性。因?yàn)檫@些優(yōu)勢(shì),永磁同步電動(dòng)機(jī)確實(shí)在需要快速和精確轉(zhuǎn)矩響應(yīng)的高性能伺服驅(qū)動(dòng)器中有很好的應(yīng)用。在永磁同步電動(dòng)機(jī)驅(qū)動(dòng)器中,電磁轉(zhuǎn)矩通常是在一個(gè)固定在轉(zhuǎn)子上的坐標(biāo)系上來(lái)間接控制定子電流元件。這一領(lǐng)域的方向創(chuàng)造需要一個(gè)位置傳感器,從而降低了驅(qū)動(dòng)器的可靠性同時(shí)增加了成本。</p><p>  有人提議,異步電動(dòng)機(jī)直接轉(zhuǎn)矩控制作為

4、一種替代控制方案在過去二十年非常流行。直接轉(zhuǎn)矩控制的異步電機(jī)具有作為計(jì)算固定參考系的內(nèi)在的運(yùn)動(dòng)狀態(tài)傳感器。此外,與磁場(chǎng)定向控制相比,采用無(wú)電流控制器和電機(jī)參數(shù)以外的定子電阻的直接轉(zhuǎn)矩控制的轉(zhuǎn)矩響應(yīng)更快,參數(shù)依賴更低。</p><p>  在90 年代末,出現(xiàn)了一種把直接轉(zhuǎn)矩控制和永磁同步電動(dòng)機(jī)的優(yōu)勢(shì)結(jié)合的理念應(yīng)用到充滿生機(jī)的驅(qū)動(dòng)器中的文章。在過去十年中,一些作者已經(jīng)提出了將直接轉(zhuǎn)矩控制應(yīng)用到永磁同步電動(dòng)機(jī)的方法。

5、</p><p>  這篇文章給出了在這個(gè)領(lǐng)域中的研究綜述。第三部分給出了內(nèi)嵌式和面貼式的永磁同步電動(dòng)機(jī)的可能實(shí)施方法。第四節(jié)和第五節(jié)討論了實(shí)施方法中的問題。第六部分總結(jié)了進(jìn)一步研究的發(fā)展方向。</p><p>  2 永磁同步電動(dòng)機(jī)直接轉(zhuǎn)矩控制的原理</p><p>  忽略脈動(dòng)轉(zhuǎn)矩,永磁同步電動(dòng)機(jī)的穩(wěn)態(tài)電磁轉(zhuǎn)矩T 可以寫成:</p><p&g

6、t;  其中表示負(fù)載角,如圖1 所示,負(fù)載角的定義是指定子磁鏈?zhǔn)噶縮和永磁磁鏈?zhǔn)噶恐g的夾角。代表極對(duì)數(shù)。方程1 適用于面貼式永磁同步電動(dòng)機(jī),它的直軸定子電感小于交軸定子電感,對(duì)于永磁同步電動(dòng)機(jī), 等于,方程1 變?yōu)椋?lt;/p><p>  從方程1 和2 可以得出,在定子磁鏈一定的情況下,轉(zhuǎn)矩由負(fù)載角決定。如圖1 所示,一個(gè)兩電平三相電壓源逆變器可以產(chǎn)生8 個(gè)電壓矢量,六個(gè)有效矢量和兩個(gè)零矢量。定子磁通矢量可由下

7、式計(jì)算:</p><p>  在上式中代表定子電阻, 和分別代表定子電壓矢量和定子電流矢量。當(dāng)定子電阻被忽略時(shí),定子磁鏈?zhǔn)噶縿t變成電壓矢量的一個(gè)開關(guān)時(shí)間</p><p>  六個(gè)有效的電壓空間矢量都有一個(gè)徑向和切向的定子磁鏈?zhǔn)噶?。從?)中可以看出,徑向電壓矢量決定定子磁鏈的幅值,而切向電壓矢量決定電子磁鏈?zhǔn)噶康男D(zhuǎn)速度和負(fù)載角。</p><p>  這樣,定子磁鏈

8、和轉(zhuǎn)矩可以同時(shí)控制逆變器。最適合的電壓矢量將定子磁鏈?zhǔn)噶亢娃D(zhuǎn)矩的給定值與估計(jì)值之間的瞬時(shí)誤差最小化。因此,盡量減少控制器錯(cuò)誤是必要的,同時(shí)還要估計(jì)定子磁鏈和轉(zhuǎn)矩。在緒論第三節(jié)對(duì)不同類型的控制器進(jìn)行了討論。(3)式可以用來(lái)估計(jì)定子磁鏈。然而,不像,在永磁同步電動(dòng)機(jī)中定子磁通矢量的初始值不同于零,而是取決于轉(zhuǎn)子的位置。因此,轉(zhuǎn)子初始位置需要測(cè)量或估計(jì)。</p><p>  在評(píng)論的第三部分討論了不同類型的控制器。目的

9、是可以使用定子磁鏈估計(jì)。然而,不像,在永磁同步電動(dòng)機(jī)中定子磁鏈?zhǔn)噶康某跏贾档扔? 而是決定于轉(zhuǎn)子位置。所以,初始位置檢測(cè)是必需測(cè)量和估計(jì)的。</p><p><b>  3 可能實(shí)現(xiàn)方法</b></p><p>  文獻(xiàn)中有許多不同的解決方法。第一次提出了永磁同步電動(dòng)機(jī)直接轉(zhuǎn)矩控制的是文獻(xiàn)【2】然而,提出的方法不能算是直接轉(zhuǎn)矩控制,而它事實(shí)上是電流控制。正如【4】中所

10、講的一樣,直接轉(zhuǎn)矩方法除了可以用來(lái)控制電磁轉(zhuǎn)矩以外,還可以控制直軸電流和無(wú)功而不是定子磁鏈。在下面的這些方法沒有被考慮,因?yàn)檫@樣所有的方法都是直接轉(zhuǎn)矩和磁通控制。在文獻(xiàn)【5】中提出了一種很好的直接轉(zhuǎn)矩控制的概述,但是研究的是基于異步電機(jī)的直接轉(zhuǎn)矩控制。</p><p>  這一部分概括了永磁同步電動(dòng)機(jī)直接轉(zhuǎn)矩控制的不同實(shí)施方法。方法根據(jù)電壓矢量分布而劃分,初始定子磁鏈估計(jì)和位置傳感器的利用上也是根據(jù)電壓矢量分布而

11、區(qū)分。討論的一些方法中需要轉(zhuǎn)子位置,這樣就喪失了無(wú)傳感器運(yùn)動(dòng)狀態(tài)控制的優(yōu)點(diǎn)。</p><p><b>  開關(guān)表直接轉(zhuǎn)矩控制</b></p><p>  基本的開關(guān)表直接轉(zhuǎn)矩控制:原來(lái)的直接轉(zhuǎn)矩控制方法有一個(gè)滯后的定子磁鏈和轉(zhuǎn)矩。圖2 給出了傳統(tǒng)的方法,數(shù)值和表示給定值,虛線顯示的是可選擇編碼器。定子磁鏈的瞬時(shí)偏差有兩個(gè)可以選擇的值(1 和-1),而瞬時(shí)轉(zhuǎn)矩偏差有三個(gè)

12、可以選擇值(-1,0 和1)。此外,平面被分為六個(gè)扇區(qū)。開關(guān)表的輸入由偏差值和以及帶有定子磁通矢量的扇區(qū)號(hào)。開關(guān)表的輸出是八個(gè)可能的電壓矢量。文獻(xiàn)【6】中已經(jīng)在永磁同步電動(dòng)機(jī)中實(shí)現(xiàn)了這個(gè)方法,與文獻(xiàn)【1】中在異步電機(jī)中采用的開關(guān)表是一樣的。另外,初始磁通估計(jì)可以通過一階濾波器來(lái)解決。由于一階濾波器的穩(wěn)態(tài)輸出與初始條件無(wú)關(guān),這將產(chǎn)生良好的結(jié)果,但是不是在驅(qū)動(dòng)器的啟動(dòng)階段。</p><p>  文獻(xiàn)【3】也提出了開關(guān)

13、直接轉(zhuǎn)矩控制的方法,但沒有用零電壓矢量來(lái)控制電機(jī)。這個(gè)基本上降低了轉(zhuǎn)矩偏差到一個(gè)正常的遲滯比較。(3)式來(lái)估計(jì)磁通,假定初始磁通位置已知。這個(gè)方法適用于永磁同步電動(dòng)機(jī)。</p><p>  文獻(xiàn)【7】和【8】提出的減少開關(guān)表的方法適用于永磁同步電動(dòng)機(jī),而初始轉(zhuǎn)子位置從低分辨率編碼器中得到。通過改變定子磁鏈給定值來(lái)增加單位安培下的轉(zhuǎn)矩或減弱驅(qū)動(dòng)器的操作是可實(shí)現(xiàn)的。最近的文獻(xiàn)已經(jīng)進(jìn)一步給出了使用這一些參考磁通的生成方

14、法。在文獻(xiàn)【9】討論了基于開關(guān)表直接轉(zhuǎn)矩控制的單位磁通下的最大轉(zhuǎn)矩方法。文獻(xiàn)【10】提出了在開關(guān)表直接轉(zhuǎn)矩控制下的優(yōu)化效率方法,其中定子磁鏈產(chǎn)生最大效率。在所有這些參考磁通生成方法中都需要離線計(jì)算來(lái)查找給定定子磁鏈。</p><p>  2)直接轉(zhuǎn)矩控制的一個(gè)主要的缺點(diǎn)是紋波轉(zhuǎn)矩和定子磁鏈。紋波可以通過使用更多不同的電壓矢量來(lái)減弱。當(dāng)直接轉(zhuǎn)矩控制時(shí),只有限定數(shù)量的每扇區(qū)的電壓矢量,開關(guān)表選擇是最合適的。然而徑向和

15、切向的矢量和理想的組成一樣是不可能的。一種更適合兩個(gè)組成部分帶有增加更多電壓矢量和增加分區(qū)的方法是可實(shí)現(xiàn)的。在文獻(xiàn)【11】中,提出了一種通過利用基于三電平的24 個(gè)電壓矢量的空間矢量調(diào)制方法。構(gòu)造一個(gè)能量化轉(zhuǎn)矩和通量錯(cuò)誤并提供72 個(gè)不同的電壓矢量圖的開關(guān)狀態(tài)表。這樣就可以實(shí)現(xiàn)較低的轉(zhuǎn)矩脈動(dòng)。在文獻(xiàn)【11】中提出了SVM 在驅(qū)動(dòng)操作的整個(gè)過程中產(chǎn)生更多不同的電壓矢量。不過,在某些操作條件下也可能使用混合算法產(chǎn)生更多的電壓矢量。文獻(xiàn)【12

16、】提出了一種在確保永磁同步電動(dòng)機(jī)啟動(dòng)階段產(chǎn)生快速轉(zhuǎn)矩的方法。在啟動(dòng)階段,SVM 用來(lái)產(chǎn)生最佳的電壓矢量,這個(gè)電壓矢量能產(chǎn)生最快的轉(zhuǎn)矩。然而,算法依賴于轉(zhuǎn)子位置,要從編碼器中得</p><p>  到轉(zhuǎn)子初始位置,同時(shí)將轉(zhuǎn)矩變化中的轉(zhuǎn)子位置看成常量。一旦達(dá)到轉(zhuǎn)矩給定值,就會(huì)使用包含電壓矢量的開關(guān)表,而且也不在需要編碼器了。</p><p>  多級(jí)逆變器使得電壓矢量能更好地控制磁通和轉(zhuǎn)矩,從

17、而減少了紋波,實(shí)現(xiàn)更小的開關(guān)頻率。缺點(diǎn)是開關(guān)電源的需要增加了系統(tǒng)的成本、復(fù)雜性和開關(guān)損耗。在文獻(xiàn)【13】中這樣的直接轉(zhuǎn)矩控制用在異步電機(jī)上,但是文獻(xiàn)中沒有提出有關(guān)適合永磁同步電動(dòng)機(jī)的方法。</p><p>  B 固定開關(guān)頻率直接轉(zhuǎn)矩控制</p><p>  為了進(jìn)一步消除轉(zhuǎn)矩和定子磁鏈脈動(dòng),并獲得固定開關(guān)頻率,可以在下一個(gè)切換時(shí)間間隔內(nèi)使用一個(gè)永磁同步電動(dòng)機(jī)的模型來(lái)計(jì)算最合適的電壓矢量。

18、這個(gè)最合適的電壓矢量可以由SVM 來(lái)實(shí)現(xiàn)。此外,利用SVM 可以改進(jìn)開關(guān)狀態(tài)表直接轉(zhuǎn)矩控制的一些其它的缺點(diǎn),例如違反極性的一致性規(guī)則,由于扇區(qū)改變?cè)斐傻母卟蓸宇l率數(shù)字實(shí)現(xiàn)的比較和扭曲。但是,有幾種方法來(lái)計(jì)算最適當(dāng)?shù)碾妷菏?lt;/p><p>  量和所需的電機(jī)參數(shù),而且在比較不同的方案時(shí)必須考慮到計(jì)算的復(fù)雜性。</p><p>  1)帶有閉環(huán)轉(zhuǎn)矩控制的電壓矢量-直接轉(zhuǎn)矩控制:圖3 給出了這種

19、類型的典型方法。在文獻(xiàn)【14】中將實(shí)際和參考轉(zhuǎn)矩的偏差值輸入到PI 調(diào)節(jié)器來(lái)改變負(fù)載角。根據(jù)(3),使用預(yù)算控制器來(lái)計(jì)算帶有測(cè)量電流、實(shí)際電流和給定磁通的信號(hào)所需的電壓矢量極坐標(biāo)。定子電壓控制用到一個(gè)空間矢量調(diào)制器。然而這種方法采用了運(yùn)動(dòng)狀態(tài)傳感器。 </p><p>  文獻(xiàn)【15】中提出了一種適用于永磁同步電動(dòng)機(jī)的不帶位置傳感器的相關(guān)的方法。估計(jì)的定子磁鏈位置,從PI 控制器得到的負(fù)載角校正和參考磁通的幅

20、值用來(lái)計(jì)算給定的磁通矢量。給定磁通矢量和實(shí)際矢量之間的偏差值,通過SVM 來(lái)更正所需的電壓矢量。文獻(xiàn)【14】【15】中提出了地紋波和固定開關(guān)頻率的獲得方法。但是有人指出由于PI 控制器對(duì)調(diào)諧很敏感,PI 控制器的使用可能惡化驅(qū)動(dòng)器的性能。</p><p>  定子磁場(chǎng)定向控制:正如文獻(xiàn)[16]中所講的定子磁鏈控制的永磁同步電動(dòng)機(jī)與先前的電壓矢量-直接轉(zhuǎn)矩控制方法聯(lián)系在一起。再者脈寬調(diào)制器用來(lái)產(chǎn)生一個(gè)增量的定子磁鏈

21、(包括振幅角)但是轉(zhuǎn)矩控制是開環(huán)。這個(gè)方法控制負(fù)載角和定子磁鏈的振幅。負(fù)載角的給定值能從轉(zhuǎn)矩給定中計(jì)算出來(lái)。建議采用一個(gè)位置傳感器。</p><p>  3)預(yù)測(cè)控制:文獻(xiàn)[17]討論了一種永磁同步電動(dòng)機(jī)的估計(jì)直接轉(zhuǎn)矩控制,圖4給出了表示。利用永磁同步電動(dòng)機(jī)的有關(guān)方程,在某一特定的時(shí)間內(nèi)計(jì)算轉(zhuǎn)矩的軌跡是可能的。用這種方法可以計(jì)算出最佳的開關(guān)順序。在恒定的開關(guān)時(shí)間間隔,一個(gè)合適的電壓矢量的應(yīng)用所需的時(shí)間可以滿足紋波

22、段的邊界計(jì)算,其余的時(shí)間間隔采用零電壓矢量從而可以減少紋波。</p><p>  在穩(wěn)態(tài)下這個(gè)能產(chǎn)生一個(gè)固定的開關(guān)頻率和一個(gè)固定的轉(zhuǎn)矩紋波。電壓矢量和開關(guān)時(shí)間的選擇是根據(jù)每次采樣間隔初始時(shí)的估測(cè)轉(zhuǎn)矩和磁通決定的。對(duì)于轉(zhuǎn)矩估測(cè),轉(zhuǎn)矩的時(shí)間變化率由定子電壓、定子電流、永磁磁通和轉(zhuǎn)子位置的作用來(lái)計(jì)算的。很顯然,在這個(gè)方法中電機(jī)參數(shù)的依賴性要比基本的直接轉(zhuǎn)矩控制大。然而,這個(gè)方法需要通過位置編碼器來(lái)獲得轉(zhuǎn)子位置角。<

23、;/p><p>  4)變結(jié)構(gòu)控制:文獻(xiàn)【18】中提出了基于永磁同步電動(dòng)機(jī)的變結(jié)構(gòu)直接轉(zhuǎn)矩控制,其中提出了滑動(dòng)面和電壓源換流器。利用轉(zhuǎn)矩和定子磁鏈偏差,以及磁通組成,電機(jī)轉(zhuǎn)速和擴(kuò)大的磁通通過可變結(jié)構(gòu)控制器來(lái)計(jì)算和滑動(dòng)面相連的電壓矢量驅(qū)動(dòng)系統(tǒng)。通過SVM 這個(gè)電壓矢量就實(shí)現(xiàn)了??梢垣@得低紋波和固定開關(guān)頻率,但是需要使用速度編碼器。變結(jié)構(gòu)控制的計(jì)算使得驅(qū)動(dòng)器性能更加依賴于電機(jī)參數(shù)。 </p><p&

24、gt;<b>  4 定子磁鏈估計(jì)</b></p><p>  直接轉(zhuǎn)矩控制的基本原則是以瞬時(shí)轉(zhuǎn)矩和定子磁鏈誤差減少到最低限度這種方式,通過改變定子磁場(chǎng)矢量來(lái)控制轉(zhuǎn)矩。這樣的定子磁鏈?zhǔn)噶康墓烙?jì)對(duì)于直接轉(zhuǎn)矩驅(qū)動(dòng)的正確操作是十分重要的。估計(jì)定子磁鏈的一種方法是測(cè)量定子電壓和電流以及方程(3)。唯一需要的電機(jī)參數(shù)是定子電阻。一體化的使用有它的缺點(diǎn):任何的電壓或電流的直流偏移都會(huì)導(dǎo)致估計(jì)定子磁鏈的大

25、漂移。文獻(xiàn)【19】提出了一些補(bǔ)償技術(shù)并進(jìn)行了簡(jiǎn)短地概括。</p><p>  為了克服這個(gè)問題,文獻(xiàn)【19】提出了采用可編程級(jí)聯(lián)低通濾波器作為替代集成。每一個(gè)低通濾波器都有一個(gè)傳輸特性,其中為濾波時(shí)間, 為信號(hào)頻率。如果時(shí)間常數(shù)和增益G 是可編程的并適合于轉(zhuǎn)子轉(zhuǎn)速,階梯可以達(dá)到同樣的相位滯后并獲得一個(gè)純積分。</p><p>  基于電壓方程組的定子磁鏈估計(jì)的另一個(gè)問題是定子電阻變化。由于

26、皮膚效應(yīng)和溫度變化,定子阻抗將有很大的差異。錯(cuò)誤的電阻值將會(huì)在方程(3)中產(chǎn)生較大的誤差。文獻(xiàn)【19】和【20】描述了一種定子電阻估計(jì)技術(shù)。它是基于電阻和電流變化的關(guān)系的,它允許PI 控制器來(lái)更正定子電阻。該算法不需要轉(zhuǎn)子位置。盡管依賴在和上的電流給定,飽和度的影響在這個(gè)方法中可以不考慮.</p><p>  文獻(xiàn)[21]介紹了另一種定子磁鏈的估計(jì)方法。該方法是根據(jù)檢測(cè)產(chǎn)品的數(shù)量估計(jì)定子磁鏈和實(shí)測(cè)定子電流。交流中

27、提取一部分,用于過濾和估計(jì)定子磁鏈。也討論了簡(jiǎn)單的低通濾波器和合適的濾波器。</p><p>  文獻(xiàn)【22】講述了估計(jì)定子磁鏈的延伸方法卡爾曼濾波,其中估計(jì)了永磁同步電動(dòng)機(jī)的機(jī)械狀態(tài)。文獻(xiàn)【23】描述了基于滑模的演示。</p><p>  5 初始轉(zhuǎn)子位置估計(jì)</p><p>  正如第二部分提到的,在直接轉(zhuǎn)矩控制驅(qū)動(dòng)中必須知道初始轉(zhuǎn)子位置,因?yàn)樗枰醪焦烙?jì)定子

28、磁鏈。如果控制器中的初始位置信息太不準(zhǔn)確的話,電機(jī)最初可能位于錯(cuò)誤的方向上。</p><p>  文獻(xiàn)【19】和【24】討論了一種估計(jì)永磁同步電動(dòng)機(jī)初始位置的技術(shù)。這個(gè)方法是基于高頻率(300 赫茲)定子電流振幅和轉(zhuǎn)子角位置之間的關(guān)系。飽和定子電流影響磁場(chǎng)極方向。文獻(xiàn)【25】描述了矩形脈沖電壓的方法,而且是針對(duì)凸極式永磁同步電動(dòng)機(jī),即只有IPMSM。 </p><p&

29、gt;  對(duì)于非凸極式永磁同步電動(dòng)機(jī),初始轉(zhuǎn)子位置的無(wú)傳感器估計(jì)更加困難。當(dāng)考慮飽和度影響度時(shí),文獻(xiàn)【19】和【24】中描述了可能適用于永磁同步電動(dòng)機(jī)的方法。</p><p><b>  6 將來(lái)研究</b></p><p>  飽和度和參數(shù)估計(jì)誤差對(duì)直接轉(zhuǎn)矩控制的永磁同步電動(dòng)機(jī)性能,尤其是對(duì)模型估計(jì)和控制器的影響要考慮。要把重點(diǎn)放在無(wú)傳感器控制和估計(jì)上。傳感器位置估

30、計(jì)除了直接轉(zhuǎn)矩控制的永磁同步電動(dòng)機(jī)外還有其它的應(yīng)用。</p><p>  直接轉(zhuǎn)矩控制的永磁同步電動(dòng)機(jī)的數(shù)字執(zhí)行以及相關(guān)的永磁同步電動(dòng)機(jī)的離散模型,加上新的直接轉(zhuǎn)矩控制的方法都為更深入的研究提供了許多機(jī)會(huì)。結(jié)合于直接轉(zhuǎn)矩控制的研究計(jì)劃,最適當(dāng)?shù)拈_關(guān)戰(zhàn)略研究在進(jìn)行。</p><p>  文獻(xiàn)中提出了很多實(shí)現(xiàn)方法。但是,盡管有由于最大的轉(zhuǎn)矩特性帶來(lái)的不穩(wěn)定這一事實(shí),除了文獻(xiàn)【26】,穩(wěn)定的直接

31、轉(zhuǎn)矩控制的永磁同步電動(dòng)機(jī)驅(qū)動(dòng)器還沒有許多研究。負(fù)載角對(duì)應(yīng)的最大轉(zhuǎn)矩,負(fù)載角將產(chǎn)生較低的轉(zhuǎn)矩。如果直接轉(zhuǎn)矩控制器通過增加負(fù)載角來(lái)增加轉(zhuǎn)矩,轉(zhuǎn)矩會(huì)進(jìn)一步減少?gòu)亩斐刹环€(wěn)定。文獻(xiàn)[26]討論了避免這種不穩(wěn)定的兩種方法。兩者都是基于控制負(fù)載角。但是除了靜態(tài)的不穩(wěn)定,驅(qū)動(dòng)器的整體穩(wěn)定性也應(yīng)該考慮。文獻(xiàn)【27】給出了異步電機(jī)直接轉(zhuǎn)矩控制的穩(wěn)態(tài)機(jī)制的數(shù)學(xué)分析并用它理解直接轉(zhuǎn)矩控制的觀察行為。作為這樣的一個(gè)永磁同步電動(dòng)機(jī)的直接轉(zhuǎn)矩控制的穩(wěn)定性的徹底研究

32、仍然在進(jìn)行中。</p><p><b>  7 結(jié)論</b></p><p>  本文概述了現(xiàn)有的永磁同步電動(dòng)機(jī)直接轉(zhuǎn)矩控制的實(shí)現(xiàn)方法。概述將這些方法分為兩大類,基于矢量電壓選擇的不同和方法的構(gòu)成。首先,基于直接轉(zhuǎn)矩控制的開關(guān)表簡(jiǎn)單易于實(shí)現(xiàn)。但是,作為結(jié)果輸入到控制器中,只有有限的電壓矢量可以使用。這樣可以觀察重大轉(zhuǎn)矩和定子磁鏈紋波。其次,恒定開關(guān)頻率直接轉(zhuǎn)矩控制計(jì)劃

33、允許使用逆變方法建設(shè)電壓矢量,但是有較高的計(jì)算負(fù)擔(dān)和參數(shù)依賴。在每一個(gè)主要類別中有變化電壓的選擇,并產(chǎn)生電壓矢量。</p><p>  除了電壓選擇和生成,可能的直接轉(zhuǎn)矩控制計(jì)劃會(huì)隨著定子磁鏈和轉(zhuǎn)矩估計(jì)的不同而不同。討論了可能的估計(jì)技術(shù)。由于直接轉(zhuǎn)矩控制本身就是一個(gè)運(yùn)動(dòng)狀態(tài)無(wú)傳感器技術(shù),當(dāng)評(píng)估一個(gè)直接轉(zhuǎn)矩控制策略時(shí),位置編碼器的使用(無(wú)論是在啟動(dòng)還是正常工作條件下)必須要考慮到。為此,也討論了一些初始轉(zhuǎn)子位置估計(jì)

34、技術(shù)。</p><p>  可能實(shí)施方法的概述和相關(guān)估計(jì)問題清楚地確定了進(jìn)一步研究的興趣點(diǎn),這是本文的總結(jié)。</p><p><b>  致謝</b></p><p>  Thomas Vyncke 的這個(gè)研究是由根特大學(xué)特別研究基金的博士學(xué)位補(bǔ)助贊助的。</p><p><b>  參考文獻(xiàn)</b>

35、;</p><p>  [1] I. Takahashi and T. Noguchi, “A new quick-response and high-efficiency control strategy of an induction motor,” IEEE Trans. Ind. Applicat., vol. 22, no. 5, pp. 820–827,Sept./Oct. 1986.</p&g

36、t;<p>  [2] C. French and P. Acarnley, “Direct torque control of permanent magnet drives,”IEEE Trans.Ind. Applicat., vol. 32, no. 5, pp. 1080–1088, Sept./Oct. 1996.</p><p>  [3] L. Zhong, M. F. Rahm

37、an, W. Y. Hu, and K. W. Lim, “Analysis of direct torque control in permanent magnet synchronous motor drives,” IEEE Trans. Power Electron., vol. 12, no. 3, pp. 528–536, May 1997.</p><p>  [4] P. Vas, Senso

38、rless Vector and Direct Torque Control. New York: Oxford University Press, 1998, pp. 223–237.</p><p>  [5] G. S. Buja and M. P. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors – a survey,

39、” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 744–757, Aug.2004.</p><p>  [6] M. R. Zolghadri, J. Guiraud, J. Davoine, and D. Roye, “A DSP based direct torque controller for permanent magnet synchronous

40、motor drives,” in Conf. Rec. IEEE 29th Annual Power Electronics Specialists Conference (PESC’98), vol. 2, May 17–22, 1998,pp. 2055–2061.</p><p>  [7] M. F. Rahman, L. Zhong, and K. W. Lim, “A direct torque-c

41、ontrolled interior permanent magnet synchronous motor drive incorporating field weakening,” IEEE Trans. Ind. Applicat., vol. 34, no. 6, pp. 1246–1253, Nov./Dec. 1998.</p><p>  [8] A. Muntean, M. Radulescu, a

42、nd A. Miraoui, “Wide-speed operation of direct torque-controlled interior permanent-magnet synchronous motors,” in Conf. Proc. 16thInternational Conference on Electrical Machines (ICEM’04), no. 714, Krakow, Poland,Sept.

43、5–8, 2004, p. 6.</p><p>  [9] J. Faiz and S. H. Mohseni-Zonoozi, “A novel technique for estimation and control of stator flux of a salient-pole PMSM in DTC method based on MTPF,” IEEE Trans. Ind.Electron., v

44、ol. 50, no. 2, pp. 262–271, Apr. 2003.</p><p>  [10] J. Habibi and S. Vaez-Zadeh, “Efficiency-optimizing direct torque control of permanent magnet synchronous machines,” in Conf. Rec. IEEE 36th Annual Power

45、Electronics Specialists Conference (PESC’05), Recife, Brazil, June 12–16, 2005, pp.759–764.</p><p>  [11] L. Li, X. Wang, and H. Sun, “A variable-voltage direct torque control based on DSP in pm synchronous

46、motor drive,” in Conf. Proc. IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering (TENCON’02), vol. 3,Oct. 28–31, 2002, pp. 2065–2068.</p><p>  [12] H. Ghassemi and S. Vaez-Z

47、adeh, “A very fast direct torque control for interior permanent magnet synchronous motors start up,” Elsevier Energy Conversion and Management, vol. 46, Issue 5, pp. 715–726, Mar. 2005.</p><p>  [13] C. A. M

48、artins, X. Roboam, T. A. Meynard, and A. S. Carvalho, “Switching frequency imposition and ripple reduction in DTC drives by using a multilevel converter,” IEEE Trans. Power Electron., vol. 17, no. 2, pp. 286–297, Mar. 20

49、02.</p><p>  [14] D. Swierczynski and M. P. Kazmierkowski, “Direct torque control of permanent magnet synchronous motor (PMSM) using space vector modulation (DTC-SVM) –simulation and experimental results,” i

50、n Conf. Proc. IEEE 28th Annual Conference of the Industrial Electronics Society (IECON’02), vol. 1, Nov. 5–8, 2002, pp. 751–755.</p><p>  [15] syste L. Tang, L. Zhong, M. F. Rahman, and Y. Hu, “A novel direc

51、t torque control scheme for interior permanent magnet synchronous machine drive m with low ripple in torque and flux — a speed-sensorless approach,” IEEE Trans. Ind. Applicat.,vol. 39, no. 6, pp. 1748–1756, Nov./Dec. 200

52、3.</p><p>  [16] A. Llor, J. R´etif, X. Lin-Shi, and S. Arnalte, “Direct stator flux linkage control technique for a permanent magnet synchronous machine,” in Conf. Rec. IEEE 34thAnnual Power Electronic

53、s Specialists Conference (PESC’03), vol. 1, June 15–19, 2003,pp. 246–250.</p><p>  [17] M. Pacas and J. Weber, “Predictive direct torque control for the PM synchronous machine,” IEEE Trans. Ind. Electron., v

54、ol. 52, no. 5, pp. 1350–1356, Oct. 2005.</p><p>  [18] Z. Xu and M. F. Rahman, “A variable structure torque and flux controller for a DTC IPM synchronous motor drive,” in Conf. Rec. IEEE 35th Annual Power El

55、ectronics Specialists Conference (PESC’04), vol. 1, Aachen, Germany, June 20–25,2004, pp. 445–450.</p><p>  [19] M. F. Rahman, M. E. Haque, L. Tang, and L. Zhong, “Problems associated with the direct torque

56、control of an interior permanent-magnet synchronous motor drive and their remedies,” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 799–809, Aug. 2004.</p><p>  [20] L. Tang and M. F. Rahman, “A novel propo

57、rtional-integral (PI) stator resistance estimator for a direct torque controlled interior permanent magnet synchronous machine drive,” in Conf. Proc. IEEE International Electric Machines and Drives Conference(IEMDC’03),

58、vol. 1, June 1–4, 2003, pp. 382–388.</p><p>  [21] J. Luukko, M. Niemel¨a, and J. Pyrh¨onen, “Estimation of the flux linkage in adirect-torque-controlled drive,” IEEE Trans. Ind.Electron., vol. 50,

59、 no. 2, pp. 283–287,Apr. 2003.</p><p>  [22] V. Comnac, M. Cernat, F. Moldoveanu, and I. Draghici, “Sensorless speed and direct torque control of surface permanent magnet synchronous machines using an extend

60、ed kalman filter,” in Conf. Proc. 9th Mediterranean Conference on Control andAutomation (MED’01), Dubrovnik, Croatia, June 27–29, 2001, p. 6.</p><p>  [23] A. Ameur, “Commande sans capteur de vitesse par DTC

61、 d’une machine synchrone`a aimants permanents dote´e d’un observateur d’ordre complet `a modes glissants,”Ph.D. dissertation, University of Batna, Algeria, Oct. 2005.</p><p>  [24] M. E. Haque, L. Zhong

62、, and M. F. Rahman, “A sensorless initial rotor position estimation scheme for a direct torque controlled interior permanent magnet synchronous motor drive,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1376–1383, No

63、v. 2003.</p><p>  [25] M. Boussak, “Implementation and experimental investigation of sensorless speed control with initial rotor position estimation for interior permanent magnet synchronous motor drive,” IE

64、EE Trans. Power Electron., vol. 20, no. 6, pp. 1413–1422, Nov. 2005.</p><p>  [26] J. Luukko, O. Pyrh¨onen, M. Niemel¨a, and J. Pyrh¨onen, “Limitation of the load angle in a direct-torque-cont

65、rolled synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 793–798, Aug. 2004.</p><p>  [27] R. Ortega, N. Barabanov, and G. E. Valderrama, “Direct torque control of induction motors:

66、 stability analysis and performance improvement,” IEEE Trans. Automat. Contr.,vol. 46, no. 8, pp. 1209–1222, Aug. 2001.</p><p><b>  附錄5 外文原文</b></p><p>  Direct Torque Control of Per

67、manent Magnet Synchronous Motors – An OverviewThomas J. Vyncke, Ren´e K. Boel and Jan A.A. Melkebeek</p><p>  Department of Electrical Energy, Systems and Automation (EESA)</p><p>  Ghent U

68、niversity (UGent), Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgiumphone: +32 (0)9 264 3442, fax: +32 (0)9 264 3582,e-mail:Thomas.Vyncke@UGent.beAbstract—In high-performance servo applications a rapid and accurate torque

69、 control isdesired, preferably without the use of a motion-state sensor. The use of permanentmagnet synchronous motors (PMSMs) combined with the direct torque control (DTC)scheme offers many opportunities to achieve this

70、 goal. Recently several authors haveproposed possible</p><p>  magnetsynchronous motors. In this paper an overview is given. The basic principles of DTC forPMSMs are explained. Topologies and algorithms desc

71、ribed in the literature for interiorPMSMs as well as surface mounted PMSMs are discussed. Estimations of stator fluxlinkage and initial rotor position are needed in these control schemes. Techniques toachieve these estim

72、ations are discussed in this paper as well. The main goal of the paperis to give an outline of what is already achieved and to determine</p><p>  I. INTRODUCTION</p><p>  Permanent magnet synchr

73、onous motor (PMSM) drives are replacing classic dc andinduction machine (IM) drives in a variety of industrial applications, such as industrialrobots and machine tools. Advantages of PMSMs include low inertia, high effic

74、iency,high power density and reliability. Because of these advantages, PMSMSs are indeedexcellent for use in high-performance servo drives where a fast and accurate torqueresponse is required. In PMSM drives, the electro

75、magnetic torque is usually controlled</p><p>  For induction motors, direct torque control (DTC) was proposed as an alternativecontrol scheme in [1] and became very popular in the past two decades. DTC for i

76、nduction machines is inherently motion-state sensorless as the calculations are executedin a stationary reference frame. Moreover DTC uses no current controller and no motorparameters other than the stator resistance, wh

77、ich yields a faster torque response and a lower parameter dependence than with field oriented control.</p><p>  The idea of combining the advantages of DTC and PMSMs into a highly dynamic drive appeared in t

78、he literature in the late 1990’s [2], [3]. In the past decade several authors have proposed ways to adapt DTC to work with PMSMs.</p><p>  In this paper an overview of the research in this field is given. Th

79、e possible</p><p>  implementations are given in section III, for interior PMSMs (IPMSMs) as well assurface mounted PMSMs (SPMSMs).Problems of implementation are discussed insections IV and V. Points of inte

80、rest for further research are summarized in section VI.</p><p>  II. PRINCIPLES OF DTC FOR PMSMS</p><p>  Neglecting cogging torque, the steady-state electromagnetic torque T of a PMSMcan be wri

81、tten aswhere denotes the load angle. The load angle is defined as the angle between the stator flux linkage vector and permanent magnet flux linkage vector , as shown in Fig.1.The number of pole pairs is denoted by. Equa

82、tion (1) is applicable for PMSMs with saliency, i.e. IPMSMs, where the direct axis stator inductance is smaller than the quadrature axis stator inductance . For PMSMs without saliency, i.e. SP</p><p>  From

83、(1) and (2) it can be seen that for a constant level of the stator flux linkage,the torque can be changed by altering the load angle . A three-phase two-level voltage source inverter (VSI) can generate eight voltagevecto

84、rs as shown in Fig.1, six active vectorsand two zerovectors.The stator flux vector can be calculated aswhere denotes the stator resistance, and denote the stator voltage and current space vector respectively. It follows

85、that, when the stator resistance isneglected, the varia</p><p>  for a switch-on time of the voltage vector . Each of the six possible active voltage vectors has a component radially and a component tangenti

86、ally to the stator flux linkage vector. From (4) thus follows that the radial component of a voltage vector changes the amplitude of the stator flux linkage while the tangential component changes the rotation speed of th

87、e stator flux vector and consequently the load angle.</p><p>  This way the stator flux linkage and the torque can be simultaneouslycontrolled with a VSI. The instantaneous error between the reference and es

88、timatedvalues of stator flux linkage and torque are minimized by applying the most appropriatevoltage vector. Thus a controller minimizing the error is needed, together with an estimation of the stator flux linkage and t

89、orque.</p><p>  In the overview of section III different types of controllers are discussed.make an estimation of the stator flux linkage (3) can beused.Yet,unlikeIMs,inPMSMs theinitial value of the stator f

90、lux vector differs from zero and depends on the rotorposition. As a result the initial rotor position has to be measured or estimated.</p><p>  III. POSSIBLE IMPLEMENTATIONS</p><p>  number of

91、different implementations are proposed in the literature. One of thefirst papers to mention direct torque control for PMSMs is [2]. However the proposedscheme cannot be considered as a true DTC scheme as it is in fact a

92、current controlscheme. As pointed out in [4], a DTC scheme can be used to control, besides theelectromagnetic torque of course, the direct-axis current or reactive power instead of the stator flux linkage. In the followi

93、ng these schemes are not considered, as such all t</p><p>  In this section an attempt to summarize the different known implementations ofDTC for PMSMs is given. The schemes are divided according to voltage

94、vectorselection, but are also different in terms of (initial) stator flux estimation and the use ofposition sensors. Some of the discussed schemes namely require the rotor position ,thus losing the advantage of inherent

95、motion-sensorless control.</p><p>  Switching-table DTC</p><p>  1) Basic Switching-table DTC: A classical DTC scheme has a hysteresis comparator for the stator flux linkage and a quantisizer fo

96、r the torque. A typical scheme is shown in Fig.2, the quantities and denote reference values and the optional encoder is shown as a dashed line. The instantaneous error for the stator fluxlinkage thus has two possible v

97、alues (1 and ?1), whereas the instantaneous torque error has three (?1, 0 and 1). Furthermore the plane is divided in six sections. The errors and , t</p><p>  Switching-table DTC is also implemented in [3]

98、, but no zero voltage vectors areused to control the motor. This essentially reduces the quantisizer for the torque error toa normal hysteresis comparator. The flux estimation is based on (3) and the initial flux positio

99、n is assumed to be known. The method is applicable to IPMSMs and SPMSMs.</p><p>  In [7] and [8] this scheme with reduced switching table is applied for IPMSMs and the initial rotor position is known from a

100、low resolution encoder. It is shown that by varying the stator flux linkage reference either maximum torque per ampere (MTPA) or field weakening operation of the drive is possible. Recent papers have further reported on

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論