動力電池組管理系統(tǒng)關(guān)鍵技術(shù)研究博士論文_第1頁
已閱讀1頁,還剩140頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p>  動力電池組管理系統(tǒng)關(guān)鍵技術(shù)研究</p><p>  重慶大學(xué)博士學(xué)位論文</p><p><b>  學(xué)生姓名:胡銀全</b></p><p>  指導(dǎo)教師:劉和平教授</p><p><b>  專</b></p><p><b>  業(yè):電

2、氣工程</b></p><p><b>  學(xué)科門類:工</b></p><p><b>  學(xué)</b></p><p>  重慶大學(xué)電氣工程學(xué)院</p><p><b>  二 O一三年四月</b></p><p>  Key Techno

3、logies Research of Power Battery</p><p>  Pack Management System</p><p>  A Thesis Submitted to Chongqing University</p><p>  in Partial Fulfillment of the Requirement for the</p

4、><p>  Doctor’s Degree of Engineering</p><p><b>  By</b></p><p>  Hu Yin Quan</p><p>  Supervised by Prof. Liu He Ping</p><p>  Specialty: Electri

5、cal Engineering</p><p>  School of Electrical Engineering of Chongqing University,</p><p>  Chongqing, China</p><p>  April, 2013</p><p><b>  中文摘要</b></p

6、><p><b>  摘</b></p><p><b>  要</b></p><p>  動力電池組管理系統(tǒng)是電動汽車中必備的重要零部件,與動力電池組共同構(gòu)</p><p>  成電池系統(tǒng),為電動汽車提供動力。然而,在動力電池組管理系統(tǒng)方面仍然存在</p><p>  許多亟

7、待解決的問題,比如充放電過程管理不當(dāng)、荷電狀態(tài)(SOC)估計精度低、</p><p>  均衡充電速度慢等,也是目前電動汽車動力電池組管理系統(tǒng)的研究熱點。動力電</p><p>  池組管理系統(tǒng)只有解決這些問題,才能推動電動汽車的快速發(fā)展。因此,系統(tǒng)深</p><p>  入地開展動力電池組管理系統(tǒng)的關(guān)鍵技術(shù)研究,具有重要的理論意義和工程實用</p>

8、<p>  價值。論文以磷酸鐵鋰(LiFePO4)動力電池為研究對象,主要從電池充電特性與</p><p>  充電結(jié)束判定、電池模型建立與參數(shù)辨識、電池 SOC在線估計算法和電池組均衡</p><p>  充電控制策略等方面進(jìn)行了系統(tǒng)研究。論文取得的主要研究成果如下:</p><p>  針對截止電壓對電池充電速度、循環(huán)壽命的影響問題,建立了動力電池充放

9、</p><p>  電實驗平臺,進(jìn)行了大量理論分析和充放電特性實驗研究,分析了現(xiàn)有充電方式</p><p>  各充電階段對電池充電容量的貢獻(xiàn)大小,分析了初始 SOC、充電電流對電池充電</p><p>  截止電壓的影響,提出一種根據(jù)初始 SOC、充電電流來智能的設(shè)定充電截止電壓、</p><p>  充電方式轉(zhuǎn)換的充電結(jié)束動態(tài)判據(jù)。通

10、過實驗驗證,結(jié)果表明:基于多參數(shù)充電</p><p>  結(jié)束動態(tài)判據(jù)能夠有效減小動力電池?fù)p壞的危險,延長動力電池的循環(huán)壽命。這</p><p>  種充電結(jié)束動態(tài)判據(jù)既可以滿足動力電池常規(guī)充電的需要也可以滿足快速充電的</p><p>  需要,具有重要的工程實用價值。</p><p>  為保證等效模型能夠準(zhǔn)確描述動力電池工作外特性,在動

11、力電池充放電特性</p><p>  研究基礎(chǔ)上,分析了動力電池幾種等效模型的優(yōu)缺點,提出 LiFePO4動力電池的二</p><p>  階 RC等效電路模型是比較精確、易于參數(shù)辨識和工程應(yīng)用的等效模型,并對二階</p><p>  RC等效電路模型進(jìn)行了改進(jìn),采用最小二乘法對模型參數(shù)進(jìn)行了辨識。實驗研究</p><p>  證實了采用改進(jìn)

12、二階 RC等效電路模型能夠準(zhǔn)確模擬動力電池充放電特性,為采用</p><p>  等效電路模型的動力電池 SOC在線估計奠定了基礎(chǔ)。</p><p>  針對常規(guī) SOC定義中 SOC值可能出現(xiàn)負(fù)值的問題,提出相對最大可用容量概</p><p>  念,并對 SOC進(jìn)行了重新定義。分析了幾種常用 SOC估計算法的優(yōu)缺點,分析了</p><p&

13、gt;  擴(kuò)展卡爾曼濾波(EKF)算法的不足,并對 EKF 算法進(jìn)行了改進(jìn),分析了自適應(yīng)</p><p>  擴(kuò)展卡爾曼濾波(AEKF)算法的優(yōu)點,提出一種根據(jù)改進(jìn)二階 RC等效電路模型</p><p>  利用改進(jìn) AEKF算法對動力電池 SOC進(jìn)行精確在線估計的算法。研究結(jié)果表明:</p><p>  該算法能夠解決常規(guī) SOC估計算法精度低、抗干擾性差的問

14、題,對 SOC在線估計</p><p>  的工程應(yīng)用具有重要的參考價值。</p><p>  為解決電池組常規(guī)均衡充電方法均衡速度慢、能量損耗大、影響循環(huán)壽命等</p><p><b>  I</b></p><p>  重慶大學(xué)博士學(xué)位論文</p><p>  問題,歸納了幾種常用均衡充電裝

15、置的優(yōu)缺點,分析了根據(jù)電壓實施均衡充電方</p><p>  法的不足,在對動力電池 SOC進(jìn)行精確估計的基礎(chǔ)上,提出一種通過能量非耗散</p><p>  型電路和能量耗散型電路相結(jié)合,依據(jù)電池 SOC進(jìn)行電池組均衡充電控制的算法。</p><p>  實驗結(jié)果表明:該均衡充電控制算法能夠保證電池組中各單節(jié)電池 SOC基本一致,</p><p&

16、gt;  縮短均衡充電時間,提高均衡充電效率。</p><p>  針對動力電池間連接導(dǎo)線松動造成電池溫度過高、自燃等問題,提出一種動</p><p>  力電池間連接導(dǎo)線松動檢測的方法。該檢測方法能提高電池組供電的可靠性,避</p><p>  免電池間連接導(dǎo)線因接觸電阻過大引起的局部高溫或電池自燃的發(fā)生。為減小大</p><p>  功率

17、充放電對動力電池組循環(huán)壽命的影響,分析了幾種電池組最大可充放電功率</p><p>  估計方法的優(yōu)缺點,在通過電池組均衡充電,改善電池組不一致性的基礎(chǔ)上,提</p><p>  出一種改進(jìn)的動力電池組最大可充放電功率估計方法。該估計方法能夠估計動力</p><p>  電池組在約束條件下的最大可充放電功率,為極限加速、爬坡、快速充放電和再</p>&

18、lt;p>  生制動等運行狀態(tài)提供電池的安全控制依據(jù),避免動力電池的損壞。</p><p>  關(guān)鍵詞:電動汽車;動力電池組;電池組管理系統(tǒng);荷電狀態(tài)估計;均衡充電</p><p><b>  II</b></p><p><b>  英文摘要</b></p><p><b>  A

19、BSTRACT</b></p><p>  Battery management system (BMS) is an important prerequisite component in</p><p>  electric vehicle (EV), with battery pack together to form the battery sy

20、stem, to provide</p><p>  power for EV. However, there are still many urgent problems in BMS, such as improper</p><p>  management of charge and discharge process, low state of charge (S

21、OC) estimation</p><p>  accuracy, slow equalizing charge speed, and so on; which are also research hotspots in</p><p>  BMS. Only by solving these problems of BMS, can the deve

22、lopment of EV be</p><p>  promoted. Therefore, in-depth research of key technologies has important theoretical</p><p>  significance and practical value in BMS. In this paper, LiFeP

23、O4 batteries are set as the</p><p>  object of current study, battery charge characteristics and charge end determination,</p><p>  battery mathematic model and parameters identificati

24、on, battery SOC online estimation</p><p>  algorithm, and battery pack equalizing charge control strategy have been systematically</p><p>  studied. The primary achievements of this paper are

25、 as follow:</p><p>  Based on the effect of cut-off voltage on charge speed and cycle life of the battery,</p><p>  charge and discharge experimental platforms are established; a

26、large number of</p><p>  theoretical analysis and experimental research has been done; charge capacity</p><p>  contribution of each charge stage is discussed in the

27、 existing charge methods; the</p><p>  influence of initial SOC and charge current on charge cut-off voltage is analyzed. A</p><p>  charge end dynamic criterion of power battery i

28、s proposed, that charge cut-off voltage</p><p>  and charge mode conversion are intelligently set according to initial SOC and charge</p><p>  current. In the end, the correctness and a

29、pplication value is verified by test results. This</p><p>  charge end dynamic criterion not only guaranties the charge rate but also limits the risk</p><p>  of damaging power battery, whi

30、ch means the cycle life of power battery is prolonged.</p><p>  In order to ensure equivalent model can accurately describe external characteristics</p><p>  of power battery work, many eq

31、uivalent models of battery are discussed based on</p><p>  charge and discharge characteristics researches of power battery, proposed that the</p><p>  second-order RC equivalen

32、t circuit model of LiFePO4 power battery is more accurate,</p><p>  easy parameter identification and engineering applications, and for the lack of</p><p>  second-order RC

33、 equivalent circuit model, the model has been improved, and the</p><p>  improved model’s parameters are accurately identified by the method of least squares.</p><p>  The experim

34、ental results show: charge and discharge characteristics of power battery</p><p>  are accurately simulated by improved second-order RC equivalent circuit model, and</p><p><b>

35、  III</b></p><p>  重慶大學(xué)博士學(xué)位論文</p><p>  the foundation of power battery SOC estimation using equivalent circuit model is laid.</p><p>  Battery SOC is redefined to solve some

36、 problems in conventional SOC definition,</p><p>  and concept of relative maximum available capacity is proposed. The advantages and</p><p>  disadvantages of several SOC estimation al

37、gorithms are discussed, EKF algorithm has</p><p>  been improved for the lack of EKF algorithm, the advantages of AEKF algorithm is</p><p>  analyzed, and a method of accurate SOC onlin

38、e estimation of power battery is proposed,</p><p>  that according to improved second-order RC equivalent circuit model, improved AEKF</p><p>  algorithm is applied to estimate power battery

39、 SOC. The experimental results show: the</p><p>  SOC estimation method solves low accuracy and poor anti-jamming problems of</p><p>  conventional SOC estimation and has an

40、 accurate reference value in engineering</p><p>  applications of the SOC online estimation.</p><p>  In order to solve low equalizing charge speed and large energy loss of conventional<

41、/p><p>  equalizing charge methods, the advantages and disadvantages of several equalizing</p><p>  charge devices are summarized, the lack of equalizing charge methods based on th

42、e</p><p>  batteries voltages is analyzed, on the basis of accurate estimation of power battery SOC,</p><p>  a control algorithm of active equalizing charge of power battery pack is propose

43、d, that</p><p>  is combined by the energy non-dissipative type circuit and the energy dissipation type</p><p>  circuit, meanwhile the equalizing charge process is controlled according to

44、 battery SOC.</p><p>  The experimental results show: the equalizing charge control algorithm to ensure that all</p><p>  batteries SOC is basically the same, shorten the equalizing charge time

45、.</p><p>  A detection method of connecting wires loose between the batteries is proposed for</p><p>  connecting wires loose problems. The detection method can improve the reliability of&

46、lt;/p><p>  batteries supply, to avoid the high temperature of batteries connecting wires and</p><p>  spontaneous combustion of the batteries. In order to reduce the effect of the l

47、arge power</p><p>  charge and discharge on the cycle life of battery pack, on the basis of equalizing charge</p><p>  of battery pack, a method of the maximum charge and discharge power

48、 estimation of</p><p>  battery pack is proposed. The proposed estimation method can estimate the maximum</p><p>  charge and discharge power of power battery pack under the constrain

49、conditions, and</p><p>  provide the control basis for limit acceleration, climbing, fast charge discharge and</p><p>  regenerative braking, and avoid the damage of power battery.<

50、/p><p>  Keywords: Electric vehicles; Power battery pack; Battery pack management system;</p><p>  SOC estimation; Equalizing charge</p><p><b>  IV</b></p><

51、;p><b>  目</b></p><p><b>  錄</b></p><p><b>  目</b></p><p><b>  錄</b></p><p>  中文摘要....................................

52、..............................................................................................I</p><p>  英文摘要..................................................................................................

53、............................. III</p><p>  1 緒 論................................................................................................................................. 1</p><p>  1.

54、1 論文研究的目的和意義................................................................................................... 1</p><p>  1.2 車載動力電池組管理系統(tǒng)相關(guān)研究綜述 ..............................................................

55、......... 2</p><p>  1.2.1 動力電池組管理系統(tǒng)的研究現(xiàn)狀 ........................................................................... 2</p><p>  1.2.2 目前存在的主要問題..................................................

56、............................................. 4</p><p>  1.3 論文研究的主要內(nèi)容....................................................................................................... 6</p><p>  2 動力電池充電結(jié)

57、束判定方法................................................................................. 9</p><p>  2.1 引言.....................................................................................................

58、.............................. 9</p><p>  2.2 磷酸鐵鋰電池的反應(yīng)原理及容量衰減 ........................................................................... 9</p><p>  2.2.1 電池的反應(yīng)原理...............................

59、........................................................................ 9</p><p>  2.2.2 電池的容量衰減機(jī)理............................................................................................. 11</p>

60、<p>  2.3 實驗方法與儀器............................................................................................................. 12</p><p>  2.4 磷酸鐵鋰電池性能測試................................................

61、................................................. 14</p><p>  2.4.1 電池電壓與倍率特性............................................................................................. 14</p><p>  2.4.2 放電深度對

62、電池充電的影響................................................................................. 18</p><p>  2.4.3 截止電壓與電池充電容量..................................................................................... 21&

63、lt;/p><p>  2.4.4 溫度對電池性能的影響......................................................................................... 22</p><p>  2.5 動力電池充電結(jié)束的動態(tài)判定..................................................

64、................................... 23</p><p>  2.5.1 充電結(jié)束動態(tài)判定方法的提出............................................................................. 24</p><p>  2.5.2 充電結(jié)束動態(tài)判定方法的驗證..................

65、........................................................... 29</p><p>  2.6 本章小結(jié)......................................................................................................................... 31<

66、;/p><p>  3 動力電池模型的建立與參數(shù)辨識 .................................................................... 33</p><p>  3.1 引言..................................................................................

67、............................................... 33</p><p>  3.2 等效電路模型的建立..................................................................................................... 33</p><p>  3.2.1 幾

68、種電池模型的對比............................................................................................. 33</p><p>  3.2.2 二階 RC等效電路模型的提出.........................................................................

69、..... 37</p><p>  3.3 等效電路模型的參數(shù)辨識............................................................................................. 42</p><p>  3.3.1 開路電壓的快速估計.......................................

70、...................................................... 42</p><p>  3.3.2 歐姆內(nèi)阻和極化參數(shù)辨識..................................................................................... 47</p><p><b>  V&l

71、t;/b></p><p>  重慶大學(xué)博士學(xué)位論文</p><p>  3.4 等效電路模型的實驗驗證............................................................................................. 50</p><p>  3.4.1 充電仿真電壓與實驗電壓對比...

72、.......................................................................... 50</p><p>  3.4.2 放電仿真電壓與實驗電壓對比............................................................................. 51</p><p>

73、  3.5 本章小結(jié)......................................................................................................................... 54</p><p>  4 動力電池 SOC在線估計算法..............................................

74、.............................. 55</p><p>  4.1 引言................................................................................................................................. 55</p><p>  4

75、.2 SOC的定義方法 ............................................................................................................ 55</p><p>  4.2.1 SOC的傳統(tǒng)定義...........................................................

76、.......................................... 55</p><p>  4.2.2 SOC的重新定義..................................................................................................... 57</p><p>  4.2.3 電

77、池組 SOC的確定............................................................................................... 58</p><p>  4.3 幾種 SOC估計算法的比較 .....................................................................

78、..................... 58</p><p>  4.4 卡爾曼濾波算法分析..................................................................................................... 60</p><p>  4.4.1 擴(kuò)展卡爾曼濾波原理..................

79、........................................................................... 61</p><p>  4.4.2 可變增益因子? 的引入.......................................................................................... 63</p>

80、;<p>  4.4.3 改進(jìn)自適應(yīng)擴(kuò)展卡爾曼濾波算法......................................................................... 64</p><p>  4.5 新的 SOC在線估計算法 .....................................................................

81、......................... 65</p><p>  4.5.1 系統(tǒng)的狀態(tài)空間表達(dá)............................................................................................. 65</p><p>  4.5.2 系統(tǒng)穩(wěn)定性分析......................

82、............................................................................... 67</p><p>  4.5.3 基于電池模型的改進(jìn) AEKF算法 SOC在線估計............................................... 69</p><p>  4.6 新的 SOC

83、在線估計算法的實驗驗證........................................................................... 70</p><p>  4.6.1 初始 SOC為 1的 SOC估計分析 ......................................................................... 70<

84、;/p><p>  4.6.2 魯棒性測試分析..................................................................................................... 71</p><p>  4.6.3 脈沖干擾測試分析..............................................

85、................................................... 72</p><p>  4.6.4 車載放電實驗分析................................................................................................. 74</p><p>  4.7 本章

86、小結(jié)......................................................................................................................... 76</p><p>  5 動力電池組均衡充電控制策略 ......................................................

87、................... 77</p><p>  5.1 引言................................................................................................................................. 77</p><p>  5.2 兩種均衡充電電路對比

88、................................................................................................. 77</p><p>  5.2.1 能量耗散型電路....................................................................................

89、................. 77</p><p>  5.2.2 能量非耗散型電路................................................................................................. 78</p><p>  5.3 電池組均衡充電方法探討.........................

90、.................................................................... 79</p><p>  5.3.1 根據(jù)電壓均衡充電方法......................................................................................... 79</p><p&

91、gt;  5.3.2 根據(jù) SOC均衡充電方法....................................................................................... 80</p><p>  5.3.3 不同運行狀態(tài)下電池組均衡充電..............................................................

92、........... 80</p><p><b>  VI</b></p><p><b>  目</b></p><p><b>  錄</b></p><p>  5.4 動力電池組不一致性分析......................................

93、....................................................... 81</p><p>  5.4.1 電壓分散性實驗..................................................................................................... 81</p><p> 

94、 5.4.2 補充充電實驗......................................................................................................... 82</p><p>  5.4.3 實驗結(jié)果分析................................................................

95、......................................... 83</p><p>  5.5 均衡充電裝置的改進(jìn)..................................................................................................... 84</p><p>  5.6 均衡充電控制策略分

96、析................................................................................................. 85</p><p>  5.6.1 電池組充電系統(tǒng)的硬件設(shè)計..............................................................................

97、... 85</p><p>  5.6.2 新均衡充電控制算法............................................................................................. 86</p><p>  5.6.3 新均衡充電控制算法驗證........................................

98、............................................. 90</p><p>  5.7 本章小結(jié)......................................................................................................................... 93</p><p

99、>  6管理系統(tǒng)設(shè)計與最大充放電功率估計........................................................... 95</p><p>  6.1 引言........................................................................................................

100、......................... 95</p><p>  6.2 電池組管理系統(tǒng)設(shè)計..................................................................................................... 95</p><p>  6.2.1 管理系統(tǒng)硬件設(shè)計...............

101、.................................................................................. 95</p><p>  6.2.2 管理系統(tǒng)軟件設(shè)計.................................................................................................

102、98</p><p>  6.3 電池間連接導(dǎo)線松動檢測........................................................................................... 100</p><p>  6.4 最大可充放電功率估計................................................

103、............................................... 102</p><p>  6.4.1 常用最大可充放電功率估計方法 ....................................................................... 102</p><p>  6.4.2 新的最大可充放電功率估計方法的提出 ...

104、........................................................ 104</p><p>  6.4.3 仿真結(jié)果分析....................................................................................................... 105</p><p&

105、gt;  6.5 本章小結(jié)....................................................................................................................... 107</p><p>  7 總結(jié)及展望......................................................

106、............................................................ 109</p><p>  7.1 論文結(jié)論及創(chuàng)新點....................................................................................................... 109</p>

107、<p>  7.2 論文后續(xù)工作展望....................................................................................................... 111</p><p>  致 謝.............................................................

108、................................................................ 113</p><p>  參考文獻(xiàn)............................................................................................................................

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論