版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、一元二次不等式的解法,一元一次函數(shù),一元一次方程,,一元一次不等式,,它們之間有怎樣的聯(lián)系?,請(qǐng)同學(xué)們解決如下問題:,(1)解方程2x-7=0(2)作出函數(shù) y=2x-7的圖像(3)解不等式2x-7>0,,考察:對(duì)一次函數(shù)y=2x-7,當(dāng)x為何值時(shí),y=0;當(dāng)x為何值時(shí),y0?,當(dāng)x=3.5時(shí),y=0, 即 2x-7=0;當(dāng)x3.5時(shí),y>0, 即 2x-7>0,一般的請(qǐng)看下表:
2、 “三個(gè)一次”的聯(lián)系,,,,,x,y,o,●,●,思考:,類似地,我們能不能將一元二次不等式的求解與一元二次函數(shù)以及一元二次方程聯(lián)系起來找到其求解方法呢?,思考:對(duì)二次函數(shù) y=x2-x-6,當(dāng)x為何值時(shí),y=0?當(dāng)x為何值時(shí),y0 ?,當(dāng) x=-2 或 x=3 時(shí), y=0 即 x2?x?6=0,當(dāng) x3 時(shí), y>0 即 x2?x?6>0,當(dāng)?2<x<3 時(shí), y<0 即 x2?x?6<0,3,
3、-2,,,,結(jié)合函數(shù)圖象進(jìn)行思考,思考:一元二次方程、二次函數(shù)、一元二次不等式三者之間存在怎樣的聯(lián)系,,,,,,o,x,y,可不可以利用二次函數(shù)圖象解一元二次不等式?,,,若一元二次方程x2-x-6=0 的解是x1=-2,x2=3.,則拋物線y=x2-x-6與 x軸的交點(diǎn)就是 (-2,0)與(3,0),,一元二次不等式 x2-x-60 的解集是 {x|x3}.,看在X軸上方的圖象,看在X軸下方的圖象,,例1 解不等式
4、x2-6x-7>0,解:方程x2-6x-7=0的根是,由y=x2-6x-7的圖像得原不等式的解集是 {x | x 7 },作函數(shù)圖象的草圖,-1,7,例2:解不等式 -x2-x+20<0,解:整理得X2+X-20>0 因?yàn)椤?12-4×1 ×(-20)=81>0,方程X2+X-20=0有兩個(gè)不相等的實(shí)數(shù)根,為X1=-5,X2=4,,由y=X2+X-20的圖像得原不等式的解
5、集是 (-∞,-5)∪(4, +∞)。,,,,練習(xí)解不等式 3x2-7x+2<0,解:因?yàn)椤?=(-7)2-4×3 ×2=25>0,方程3x2-7x+2=0有兩個(gè)不等的實(shí)根x1= ,x2=2。,所以不等式的解集是( ,2)。,,例3解不等式 4x2-4x+1>0,解:因?yàn)椤?=(-4)2-4×4 ×1=0,方程4x2-4x+1=0有兩個(gè)相等的實(shí)根
6、 x1=x2= 。,所以不等式的解集是,,練習(xí)解不等式-x2+2x-3>0,解:整理得x2-2x+3<0 因?yàn)椤?=(-2)2-4×1 ×3=-8<0,方程x2-2x+3=0 無實(shí)根。,所以原不等式的解集是 。,3.根據(jù)一元二次方程的根,結(jié)合不等號(hào)的方向及二次函數(shù)的圖象,寫出不等式的解集。,一元
7、二次不等式的解法步驟:,1.先把二次項(xiàng)系數(shù)化為正數(shù);,2.根據(jù)“△”的情況,解出對(duì)應(yīng)的一元二次方程;,1.先把二次項(xiàng)系數(shù)化為正數(shù); 2.根據(jù)“△”的情況,解出對(duì)應(yīng)的一元二次方程; 3.根據(jù)一元二次方程的根,結(jié)合不等號(hào)的方向及二次函數(shù)的圖象,寫出不等式的解集。,小結(jié):解一元二次不等式的步驟:,① 將二次不等式化成一般形式:ax2+bx+c>0 (最好化為a>0的形式),② 求△若△>0或△=0
8、則要求出方程 ax2+bx+c=0的兩根;,④ 根據(jù)圖象結(jié)合不等號(hào)的方向(注意有無等號(hào)?)寫出不等式 的解集.,③ 畫出y=ax2+bx+c的圖象(草圖),有時(shí)△=0不需要求出方程根,鞏固練習(xí)1 解不等式,解: 方程 的解是,所以,不等式的解集是 {x | x 7 },,,,-0.5,2,,練習(xí) 解下列不等式:1、2、3、,小結(jié):,思考
9、 對(duì)于ax2+bx+c>0中 △=0或△<0的 情況,求出函數(shù)y=ax2+bx+c與x軸的交點(diǎn), 如何按 圖象寫出不等式的解集?,一般的請(qǐng)看下表:“三個(gè)二次”的聯(lián)系,以y=ax2+bx+c(a>0)為例,注意大前提:a>0,,,,△>0,有兩相異實(shí)根x1,x2 (x1<x2),{x|xx2},{x|x1<x<x2},△=0,△<0,有兩相等實(shí)根x1=x2=,{x|x
10、≠ },Φ,Φ,R,沒有實(shí)根,,這張表是我們今后求解一元二次不等式的主要工具,必須熟練掌握,其關(guān)鍵是抓住相應(yīng)的二次函數(shù)的圖像。,,記憶口訣: 大于0取兩邊, 小于0取中間.,再次強(qiáng)調(diào)注意公式口訣的大前提: a>0,a>0,小結(jié):解一元二次不等式的步驟:,① 將二次不等式化成一般形式:ax2+bx+c>0 (最好化為a>0的形式),② 求△若△>0或△=0則要求出方程 ax2+
11、bx+c=0的兩根;,④ 根據(jù)圖象結(jié)合不等號(hào)的方向(注意有無等號(hào)?)寫出不等式 的解集.,③ 畫出y=ax2+bx+c的圖象(草圖),有時(shí)△=0不需要求出方程根,練習(xí)1:1)解不等式2)已知 的解集為 ,求m、n的值.,小結(jié):用韋達(dá)定理確定根與系數(shù)的關(guān)系。,練2 集合A={x︱x2-3x-10≤0,x∈Z}, B={x︱2x2-x-6﹤0,x ∈Z } 則A∩B的子集的個(gè)數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 一元二次不等式的解法(3)
- 一元二次不等式的解法(2)
- 5一元二次不等式的解法
- 一元二次不等式及其解法練習(xí)
- 3.3一元二次不等式及其解法
- 一元二次不等式解法教案2
- 一元二次不等式解法教案6
- 一元二次不等式解法教案5
- 一元二次不等式解法教案1
- 一元二次不等式的解法 含答案
- 優(yōu)質(zhì)文檔 一元二次不等式及其解法
- 一元二次不等式及其解法評(píng)測(cè)練習(xí)
- 優(yōu)質(zhì)文檔 一元二次不等式及其解法
- 一元二次不等式及其解法導(dǎo)學(xué)案
- 課時(shí)1一元二次不等式及其解法
- 一元二次不等式3
- 一元二次不等式1
- 高中一元二次不等式解法及其應(yīng)用
- 一元二次不等式及其解法-(高考題)
- 2.2 不等式 2.2.3 一元二次不等式的解法精品練習(xí)(含解析)新
評(píng)論
0/150
提交評(píng)論