aprimerineconometrictheory2016ch8_第1頁
已閱讀1頁,還剩33頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、Chapter8EstimatsInprobabilitytheyweaimtodeducethelikelihoodofdifferentoutcomesbasedonknownprobabilitydistributions.Statisticsistheinverseproblem.Wewanttoinferunknownprobabilitydistributionsfromoutcomesweobserve.Inthischa

2、pterwebegintoexpletheseideas.8.1TheEstimationProblemLet’sstartoffbyclarifyingthenatureoftheproblemwewanttostudy.8.1.1DefinitionsFromapedagogicalpointofviewit’sbesttostartourstudyofstatisticsinasettingwheresuccessiveobser

3、vationsarebothindependentidenticallydistributed.Laterwe’llextendtodependentdata.InanIIDsettingthefundamentalproblemofeconometricsstatisticsisthis:Problem8.1.1WeobserveindependentZvalueddrawsz1...zNfromacommonbutunknowndi

4、stributionP∈PwherePisaclassofdistributionsonZ.WewishtoinfersomefeaturesofPfromthissample.ThesetPistheuniverseofdistributionswearewillingtoconsider.Itcanbeanythingincludingthesetofalldistributionsontheoutcomespace.Oneofth

5、emaintasksofeconomictheyistorestrictPtherebynarrowdownthesetofdistributionswehavetosearchover.Example8.1.1Benhabibetal.(2015)studythewealthdistributioninamodelwithidiosyncraticcapitalincomerisk.Themodelpredictsthatthewea

6、lthdistributionwill213Estimats215?crelationsacrosscodinatesofP?thevariance–covariancematrixassociatedwithP?parameterscontrollingdependencewhensayPismodeledviaacopulaovercertainmarginals.8.1.1.1FeaturesWereferredaboveto“f

7、eatures“ofPthatwemightbeinterestedinestimating.Let’sdefineafeatureofPtobeanobjectofthefmγ(P)fsomeγ:P→S(8.1)ThesetSisleftarbitrarytoaccommodateallpossiblefeatures.WhenPisunderstoodwe’llwriteγ(P)asγ.Herearesomeexamplesfuni

8、variateProutinelyestimatedineconometricstudies:?γ(P)=?skP(ds)thekthmomentofP.?γ(P)=infs∈R:P(?∞s]?12themedianofP.?γ(P)=PwhenwewanttoestimatePitself.?γ(P)=thedensityofPwhenPisabsolutelycontinuous.IfPismultivariateoverz=(xy

9、)thenonefeatureofinterestistheregressionfunctionf?(x):=E[y|x].ThisfunctionisuniquelydeterminedbyP(see5.2.5).8.1.1.2ParametricversusNonparametricClassesInthestatisticalproblemslistedaboveitisassumedthattheunknowndistribut

10、ionbelongstosomeclassP.WecallPaparametricclassifitcanbeexpressedasP=Pθθ∈Θ:=:Pθ:θ∈ΘfsomeΘ?RKInotherwdsaclassofdistributionsisparametricifitcanbeindexedbyfinitelymanyparameters.Aclassofdistributionsiscallednonparametricifi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論