版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、A mixture integer-valued ARCH modelFukang Zhu, Qi Li, Dehui Wang ?School of Mathematics, Jilin University, Changchun, Jilin 130012, PR Chinaa r t i c l e i n f oArticle history:Received 1 June 2009Received in revised for
2、m22 October 2009Accepted 26 January 2010 Available online 4 February 2010Keywords:AutocorrelationEM algorithmInteger-valued time seriesMixture modelModel selectionStationaritya b s t r a c tWe propose a mixture integer-v
3、alued ARCH model for modeling integer-valued timeseries with overdispersion. The model consists of a mixture of K stationary or non-stationary integer-valued ARCH components. The advantages of the mixture model overthe s
4、ingle-component model include the ability to handle multimodality and non-stationary components. The necessary and sufficient first- and second-order stationarityconditions, the necessary arbitrary-order stationarity con
5、ditions, and the autocorrela-tion function are derived. The estimation of parameters is done through an EMalgorithm, and the model is selected by three information criterions, whoseperformances are studied via simulation
6、s. Finally, the model is applied to a real dataset.p1,y,pK) model is first-order stationary, then from (2.2) we havem ¼: EðXtÞ ¼ EðmtÞ ¼PK k ¼ 1 akbk0 1? PK k ¼ 1 Ppk i ¼
7、 1 akbki :Theorem 2. Suppose that the process Xt following a MINARCH(K;p,y,p) model is first-order stationary. A necessary and sufficient condition for the process to be second-order stationary is that all roots of 1?C1z
8、?1? ? ? ? ?Cpz?p ¼ 0 lie inside the unit circle, where for u,l=1,y,p-1,Cu ¼ X Kk ¼ 1 ak b2 ku? X p?1v ¼ 1Xji?jj ¼ v bkibkjbvuyu00@1A; Cp ¼ X Kk ¼ 1 akb2 kp;yl0 ¼ X Kk ¼ 1 akbk
9、l; yll ¼ X Kk ¼ 1 ak Xji?lj ¼ l bki0@1A?1 and ylu ¼ X Kk ¼ 1 ak Xji?lj ¼ u bki; ual;where B and B?1 are ðp?1Þ ? ðp?1Þ matrices such that B ¼ ðyijÞp?1 i;j &
10、#188; 1 and B?1=(bij)i,j=1 p-1 .In the following, we give two special cases of Theorem 2.Corollary 1. Suppose that the process Xt following a MINARCH(K;p,y,p) model is first-order stationary. When p=1, the second- order
11、stationarity condition is PK k ¼ 1 akb2 k1 o1. When p=2, the second-order stationarity condition is d2 þd1 o1, whered1 ¼ X Kk ¼ 1 akb2 k1 þ2PK k ¼ 1 akbk1bk2? ? PK k ¼ 1 akbk1? ?1? PK k
12、 ¼ 1 akbk2 ; d2 ¼ X Kk ¼ 1 akb2 k2:As an illustration, consider the MINARCH(2;1,1) model. The conditions for first- and second-order stationarities are a1b11 þa2b21 o1 and a1b2 11 þa2b2 21 o1, re
13、spectively. Note that it is possible for one of the components to be a non- stationary INARCH process yet for the time series to still be second-order stationary. We illustrate this point with a simulated series from the
14、 following MINARCH(2;1,1) model (A): a1 ¼ 0:75;a2 ¼ 0:25; l1t ¼ 1þ0:5Xt?1; l2t ¼ 2þ1:5Xt?1. The time plots, the sample autocorrelation functions, the sample partial autocorrelation functions
15、, and a histogram for the simulated series are shown in Figs. 1 and 2, respectively. The simulated time series appears to be stationary and bimodal. As the MINARCH model is a mixture of INARCH models, the range of autoco
16、rrelations of the time series generated by the MINARCH model should be similar to that of an INARCH model. For a second-order stationary process Xt following a MINARCH model, we haveCovðXt?mt; Xt?jÞ ¼ E
17、89;ðXt?mtÞðXt?j?mÞ? ¼ E½ðXt?j?mÞEððXt?mtÞjF t?1Þ? ¼ 0thenCovðXt; Xt?jÞ ¼ Covðmt; Xt?jÞ ¼ Cov X pi ¼ 1X Kk ¼ 1 akbki
18、!Xt?i; Xt?j!sorj ¼ X pi ¼ 1X Kk ¼ 1 akbki!rji?jj; j ¼ 1; . . . ; p;where rj is the lag j autocorrelation. Note that these equations are similar to the Yule–Walker equations for the ordinaryINARCH(p) p
19、rocess (see Weiß, 2009), where the coefficient PK k ¼ 1 akbki replaces the lag i coefficient of the INARCH(p)process. Specially, for the MINARCH(K;1,y,1) model, rj ¼ ? PK k ¼ 1 akbk1?j .The range of p
20、ossible autocorrelations is as great as that of the standard INARCH process, since the INARCH model is just a limiting case of the MINARCH model. It is not difficult to modify the MINARCH model (2.1) to handle non-statio
21、nary time series. This can be done by restricting one of the roots of the equation 1?bk1z?1? ? ? ? ?bkpkz?pk ¼ 0 to be 1 for each of the K components. However, it is equivalent to the fitting of a stationary MINARCH
22、 model for the difference series Xt ?Xt?1. The necessary and sufficient condition for the process Xt following a MINARCH(K;p1,y,pK) model to be m th order stationary is difficult to be given. Next, we will derive a neces
23、sary condition for the process Xt that is m th order stationary.Theorem 3. Suppose that the process Xt following a MINARCH(K;p1,y,pK) model is mth order stationary, then Q o1, whereQ ¼ X Kk ¼ 1 ak X pki ¼
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)學專業(yè)畢業(yè)論文外文翻譯---混合整值arch模型
- 數(shù)學專業(yè)畢業(yè)論文外文翻譯---混合整值arch模型
- 數(shù)學專業(yè)畢業(yè)論文外文翻譯---混合整值arch模型(譯文)
- 畢業(yè)論文外文翻譯-直流值相等
- 機械專業(yè)畢業(yè)論文_外文翻譯
- 機械專業(yè)畢業(yè)論文外文翻譯
- 農(nóng)學專業(yè)畢業(yè)論文--外文翻譯
- 土建專業(yè)畢業(yè)論文外文翻譯
- 文學專業(yè)畢業(yè)論文外文翻譯
- 農(nóng)學專業(yè)--外文翻譯畢業(yè)論文
- 彈性模型-畢業(yè)論文外文翻譯
- 物流專業(yè)畢業(yè)論文外文翻譯
- 畢業(yè)論文外文翻譯(中英文)
- 廣告專業(yè)畢業(yè)論文外文翻譯
- 環(huán)境專業(yè)畢業(yè)論文外文翻譯
- 機械專業(yè)畢業(yè)論文外文翻譯3
- 旅游管理專業(yè)畢業(yè)論文(外文翻譯)
- 物流專業(yè)畢業(yè)論文(含外文翻譯)
- 化工專業(yè)畢業(yè)論文外文翻譯
- 食品專業(yè)畢業(yè)論文外文翻譯3
評論
0/150
提交評論