版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、AthesissubmittedtoZhengzhouUniversityforthedegreeofMasterTheMixtureofAlgebraicandTrigonometricInterpolationtoSolvetheHomogeneousProblemsByNieKunSupervisor:ProfShicangSongComputationalMathematicsDepartmentofMathematicsZhe
2、ngzhouUniversityMay2010摘要目前,復(fù)合材料在工業(yè)的各個(gè)方面應(yīng)用非常廣泛,在小周期復(fù)合材料解的漸近展開式中,需要知道相應(yīng)均勻化問題的完整二階導(dǎo)數(shù)值,用一般的數(shù)值計(jì)算很難得到。本文使用有限元法,利用多項(xiàng)式空間和補(bǔ)充三角函數(shù)構(gòu)造出包含二階導(dǎo)數(shù)作為節(jié)點(diǎn)參數(shù)的二維空間的15參元和三維空間的38參元,并應(yīng)用到均勻化問題中,給出它們?cè)谡齽t條件下的誤差估計(jì)。這種構(gòu)造方法滿足復(fù)合材料漸近展開問題的計(jì)算要求,并且比低階元有更好的收斂階
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 一類含參數(shù)均勻三角樣條及其插值曲線.pdf
- 兩類三角插值問題的研究.pdf
- 費(fèi)耶三角插值研究.pdf
- 關(guān)于三角多項(xiàng)式的若干插值問題.pdf
- 三角空間上的Hermite插值.pdf
- 代數(shù)三角混合曲線理論及應(yīng)用.pdf
- 反周期函數(shù)的三角插值.pdf
- 三角插值樣條曲線曲面融合造型.pdf
- 反半周期三角Hermite插值Coons曲面.pdf
- 三角形域上的超限插值.pdf
- 三角網(wǎng)格曲面的均勻面積參數(shù)化.pdf
- 擬三角Hopf π-代數(shù).pdf
- 二元三角插值多項(xiàng)式的逼近.pdf
- 三角形參數(shù)域上的超限插值.pdf
- 三角域光順Gregory曲面插值算法研究.pdf
- 奇異積分方程的三角hermite插值小波算法
- 奇異積分方程的三角Hermite插值小波算法.pdf
- 非均勻插值細(xì)分曲面.pdf
- 三角形域上超限插值曲面的研究.pdf
- 三角范數(shù)的代數(shù)性質(zhì).pdf
評(píng)論
0/150
提交評(píng)論