基于粗糙集理論的不完備信息系統(tǒng)下的知識獲取方法研究.pdf_第1頁
已閱讀1頁,還剩44頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、重慶大學(xué)碩士學(xué)位論文基于粗糙集理論的不完備信息系統(tǒng)下的知識獲取方法研究姓名:白俊卿申請學(xué)位級別:碩士專業(yè):應(yīng)用數(shù)學(xué)指導(dǎo)教師:劉瓊蓀20060501重慶大學(xué)碩士學(xué)位論文 英文摘要IIABSTRACTHuman's knowledge is continuously enriched and updated. However, by contrast tothe objective world, it is incomplete,

2、undependable and uncertain. Human beings havebeen continuously and gradually learning the objective world by using the impreciseand incomplete knowledge. Rough set theory is a mathematical tool used for dealingwith vague

3、ness and uncertainty. Simultaneously, the classical rough set theory isbased on complete information. In this paper, Knowledge Discovery based on roughset theory under incomplete information is researched.In the paper, a

4、n overview of the current situation of researches on Rough Set, andthe main issues related to the incomplete data problem and the commonly- used methods of handling incomplete data problems are detailed. Then rough set t

5、heory’ sbasic concepts and properties are summarized. Binary relation and attribute reductionalgorithms of incomplete information system are also summarized. Based on thetheory, probability discernibility matrix is defin

6、ed and corresponding discernibilityfunction is given. Then a probability algorism for attributes reduction is proposed. The probability that the attribute belong to the reduction can be know from thereduction which is ga

7、ined by the algorism, and we can sample according to thisreduction.Along with the rapid increase of data, the incremental data mining has raised wideconcerns. In this paper, attribute price (P) is defined and a new incre

8、mental algorithmfor attribute reduction is provided. The attribute reduction of new information systemcan be got by the algorithm in the dynamic mode when a condition attribute is addedto the information system without t

9、he change of object and decision attribute. At last,the dynamic reduction algorithm is improved and the improved algorithm is given.Keywords: Rough Sets Theory, Incomplete Information System, AttributeReduction, Upper Ap

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論