版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、在這篇論文中,我們主要在Banach空間中引入了幾何參數(shù)或模;并研究了它們的性質(zhì)及其與一致非方,正規(guī)結(jié)構(gòu),一致正規(guī)結(jié)構(gòu)的關(guān)系;還計(jì)算了二維Day-James空間l∞-l1的Jordan-vonNeumann常數(shù)的精確值. 在第一部分,我們主要介紹了本文的研究背景和Banach空間幾何理論中的基本定義和基本結(jié)論. 在第二部分,我們分三節(jié)敘述所得到的Banach空間X上的主要結(jié)論及其證明.●我們引入U(xiǎn)β-凸模uβ(ε),并定
2、義Uβ-空間,證明了如果存在δ>0,使得uβ(1-δ)>0,則R(X)<2,其中R(X)=sup{liminfn→∞‖xn+x‖:(xn)()B(X),xnw→0,x∈B(X)};若uβ(1)>0,則X是一致非方的;若存在δ>0,使uβ(1/2-δ)>0,則X具有正規(guī)結(jié)構(gòu),從而X具有不動(dòng)點(diǎn)性質(zhì). ●計(jì)算出二維Day-James空間l∞-l1的Jordan-vonNeumann常數(shù)CNJ(l∞-l1)=3+√54.●我們引入?yún)?shù)H
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- Banach空間的某些幾何性質(zhì)及其提升問(wèn)題的研究.pdf
- Banach空間和Orlicz空間的若干幾何性質(zhì).pdf
- Banach空間的幾何常數(shù).pdf
- banach空間的幾何常數(shù)
- 擬Banach空間的幾何常數(shù).pdf
- Banach空間的幾何常數(shù)及其應(yīng)用.pdf
- Banach空間的若干幾何性質(zhì)及幾何常數(shù).pdf
- Banach空間子集的某些度量不變量.pdf
- Banach空間中若干幾何性質(zhì).pdf
- 某些解析函數(shù)Banach空間之間的復(fù)合算子.pdf
- 174.banach序列空間的若干幾何性質(zhì)
- 關(guān)于Banach空間的某些凸性及其對(duì)偶性質(zhì)的研究.pdf
- Banach空間的復(fù)凸性及若干幾何性質(zhì).pdf
- Banach空間中的幾何常數(shù)在不動(dòng)點(diǎn)中的應(yīng)用.pdf
- Banach空間的一些幾何常數(shù)及其性質(zhì).pdf
- Banach空間的某些凸性、光滑性與可凹性的研究.pdf
- Banach空間的Hypercyclic子空間和Supercyclic子空間.pdf
- 關(guān)于空間形式中子流形幾何的某些結(jié)果.pdf
- 13604.banach空間中的一些幾何常數(shù)
- 19964.橢球意義下banach空間的若干幾何性質(zhì)
評(píng)論
0/150
提交評(píng)論