先進(jìn)復(fù)合材料格柵加筋結(jié)構(gòu)(AGS)的損傷定位研究.pdf_第1頁(yè)
已閱讀1頁(yè),還剩88頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、南京航空航天大學(xué)碩士學(xué)位論文先進(jìn)復(fù)合材料格柵加筋結(jié)構(gòu)(AGS)的損傷定位研究姓名:陳振英申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):測(cè)試計(jì)量技術(shù)及儀器指導(dǎo)教師:徐志偉2010-12先進(jìn)復(fù)合材料格柵加筋結(jié)構(gòu)(AGS)的損傷定位研究 2Abstract Advanced Grid Stiffened Structure (AGS) has received great attention in aviation aerospace fi

2、eld because of its unique advantages. After more than ten years of research, scholars have made great contribution on mechanics properties, analysis methods, fabrication methods et al. And there

3、 still need more on the damage mechanism, damage detection and health monitoring. In this paper, by the study of damage detection methods which applied on engineering structures, we made an ex

4、ploratory research on the damage recognition of the AGS structure through neural network and mode curvature difference. The main works of this paper are as follows: First, we made a research

5、on the building of equivalent stiffness model of the AGS structure, and compared this equivalent model with the finite element model. On the basis, with the previous research, we made a preli

6、minary study on the damage recognition of the AGS structure by PNN neural network. Then, summarized the theories of the mode curvature difference, and the FEM modal was introduced to prove th

7、e effectiveness of the damage recognition of the AGS structure by using this method. And at last, this method was also validated by the modal experiment. There still need a further research

8、on the recognition of damage types and the degrees,as this paper only researched the damage location of the AGS structure. Keywords: Advanced grid stiffened structures, mode curvature, neural ne

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論