教案設(shè)計(jì)高中數(shù)學(xué)人教b版教案余弦定理_第1頁(yè)
已閱讀1頁(yè),還剩27頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、1教學(xué)設(shè)計(jì)教學(xué)設(shè)計(jì)整體設(shè)計(jì)整體設(shè)計(jì)教學(xué)分析教學(xué)分析對(duì)余弦定理的探究,教材是從直角三角形入手,通過(guò)向量知識(shí)給予證明的一是進(jìn)一步加深學(xué)生對(duì)向量工具性的認(rèn)識(shí),二是感受向量法證明余弦定理的奇妙之處,感受向量法在解決問(wèn)題中的威力課后仍鼓勵(lì)學(xué)生探究余弦定理的其他證明方法,推出余弦定理后,可讓學(xué)生用自己的語(yǔ)言敘述出來(lái),并讓學(xué)生結(jié)合余弦函數(shù)的性質(zhì)明確:如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對(duì)的角是直角;如果小于第三邊的平方,那么第三邊

2、所對(duì)的角是鈍角;如果大于第三邊的平方,那么第三邊所對(duì)的角是銳角由上可知,余弦定理是勾股定理的推廣還要啟發(fā)引導(dǎo)學(xué)生注意余弦定理的幾種變形式,并總結(jié)余弦定理的適用題型的特點(diǎn),在解題時(shí)正確選用余弦定理達(dá)到求解、化簡(jiǎn)的目的應(yīng)用余弦定理及其另一種形式,并結(jié)合正弦定理,可以解決以下問(wèn)題:(1)已知兩邊和它們的夾角解三角形;(2)已知三角形的三邊解三角形在已知兩邊及其夾角解三角形時(shí),可以用余弦定理求出第三條邊,這樣就把問(wèn)題轉(zhuǎn)化成已知三邊解三角形的問(wèn)題

3、在已知三邊和一個(gè)角的情況下,求另一個(gè)角既可以應(yīng)用余弦定理的另一種形式,也可以用正弦定理用余弦定理的另一種形式,可以(根據(jù)角的余弦值)直接判斷角是銳角還是鈍角,但計(jì)算比較復(fù)雜用正弦定理計(jì)算相對(duì)比較簡(jiǎn)單,但仍要根據(jù)已知條件中邊的大小來(lái)確定角的大小根據(jù)教材特點(diǎn),本內(nèi)容安排2課時(shí)一節(jié)重在余弦定理的推導(dǎo)及簡(jiǎn)單應(yīng)用,一節(jié)重在解三角形中兩個(gè)定理的綜合應(yīng)用三維目標(biāo)三維目標(biāo)1通過(guò)對(duì)余弦定理的探究與證明,掌握余弦定理的另一種形式及其應(yīng)用;了解余弦定理與勾股

4、定理之間的聯(lián)系;知道解三角形問(wèn)題的幾種情形2通過(guò)對(duì)三角形邊角關(guān)系的探索,提高數(shù)學(xué)語(yǔ)言的表達(dá)能力,并進(jìn)一步理解三角函數(shù)、余弦定理、向量的數(shù)量積等知識(shí)間的關(guān)系,加深對(duì)數(shù)學(xué)具有廣泛應(yīng)用的認(rèn)識(shí);同時(shí)通過(guò)正弦定理、余弦定理數(shù)學(xué)表達(dá)式的變換,認(rèn)識(shí)數(shù)學(xué)中的對(duì)稱美、簡(jiǎn)潔美、統(tǒng)一美3加深對(duì)數(shù)學(xué)思想的認(rèn)識(shí),本節(jié)的主要數(shù)學(xué)思想是量化的數(shù)學(xué)思想、分類討論思想以及數(shù)形結(jié)合思想;這些數(shù)學(xué)思想是對(duì)于數(shù)學(xué)知識(shí)的理性的、本質(zhì)的、高度抽象的、概括的認(rèn)識(shí),具有普遍的指導(dǎo)意義

5、,它是我們學(xué)習(xí)數(shù)學(xué)的重要組成部分,有利于加深學(xué)生對(duì)具體數(shù)學(xué)3?4?余弦定理的另一種表達(dá)形式是什么??5?余弦定理可以解決哪些類型的解三角形問(wèn)題?怎樣求解??6?正弦定理與余弦定理在應(yīng)用上有哪些聯(lián)系和區(qū)別?活動(dòng):根據(jù)學(xué)生的認(rèn)知特點(diǎn),結(jié)合課件“余弦定理猜想與驗(yàn)證”,教師引導(dǎo)學(xué)生仍從特殊情形入手,通過(guò)觀察、猜想、證明而推廣到一般如下圖,在直角三角形中,根據(jù)兩直角邊及直角可表示斜邊,即勾股定理,那么對(duì)于任意三角形,能否根據(jù)已知兩邊及夾角來(lái)表示第

6、三邊呢?下面,我們根據(jù)初中所學(xué)的平面幾何的有關(guān)知識(shí)來(lái)研究這一問(wèn)題如下圖,在△ABC中,設(shè)BC=a,AC=b,AB=c,試根據(jù)b、c、∠A來(lái)表示a.教師引導(dǎo)學(xué)生進(jìn)行探究由于初中平面幾何所接觸的是解直角三角形問(wèn)題,所以應(yīng)添加輔助線構(gòu)成直角三角形在直角三角形內(nèi)通過(guò)邊角關(guān)系作進(jìn)一步的轉(zhuǎn)化工作,故作CD垂直于AB于點(diǎn)D,那么在Rt△BDC中,邊a可利用勾股定理通過(guò)CD、DB表示,而CD可在Rt△ADC中利用邊角關(guān)系表示,DB可利用AB,AD表示,

7、進(jìn)而在Rt△ADC內(nèi)求解探究過(guò)程如下:過(guò)點(diǎn)C作CD⊥AB,垂足為點(diǎn)D,則在Rt△CDB中,根據(jù)勾股定理,得a2=CD2+BD2.∵在Rt△ADC中,CD2=b2-AD2,又∵BD2=(c-AD)2=c2-2cAD+AD2,∴a2=b2-AD2+c2-2cAD+AD2=b2+c2-2cAD.又∵在Rt△ADC中,AD=bcosA,∴a2=b2+c2-2bccosA.類似地可以證明b2=c2+a2-2cacosB.c2=a2+b2-2abc

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論