版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1數(shù)學(xué)歸納法數(shù)學(xué)歸納法(2016.4.21)一、用數(shù)學(xué)歸納法證明與正整數(shù)有關(guān)命題的步驟是:一、用數(shù)學(xué)歸納法證明與正整數(shù)有關(guān)命題的步驟是:(1)證明當(dāng)取第一個(gè)值(如或2等)時(shí)結(jié)論正確;n0n01n?(2)假設(shè)當(dāng)時(shí)結(jié)論正確,證明時(shí)結(jié)論也正確0(N)nkkkn????1nk??綜合(1)、(2),……注意:數(shù)學(xué)歸納法使用要點(diǎn):兩步驟一結(jié)論。二、題型歸納:二、題型歸納:題型題型1.證明代數(shù)恒等式證明代數(shù)恒等式例1用數(shù)學(xué)歸納法證明:????121
2、2121751531311???????????nnnn?證明:①n=1時(shí),左邊,右邊,左邊=右邊,等式成立31311???31121???②假設(shè)n=k時(shí),等式成立,即:????1212121751531311???????????kkkk?當(dāng)n=k1時(shí)????????3212112121751531311????????????kkkk?????3212112?????kkkk????????????321211232121322??
3、????????kkkkkkkk??1121321???????kkkk這就說(shuō)明,當(dāng)n=k1時(shí),等式亦成立,由①、②可知,對(duì)一切自然數(shù)n等式成立3原等式變?yōu)?x+1)5=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-1)5令x=2得a0+a1+a2+a3+a4+a5=35=243.(2)因?yàn)?x+1)n=[2+(x-1)]n,所以a2=Cn22n-2bn==2Cn2=n(n-1)(n≥2)a22n
4、-3①當(dāng)n=2時(shí)左邊=T2=b2=2,右邊==2,左邊=右邊,等式成立2(2+1)(2-1)3②假設(shè)當(dāng)n=k(k≥2,k∈N)時(shí),等式成立,即Tk=成立k(k+1)(k-1)3那么,當(dāng)n=k+1時(shí),左邊=Tk+bk+1=+(k+1)[(k+1)-1]=+k(k+1)k(k+1)(k-1)3k(k+1)(k-1)3=k(k+1)=(k-13+1)k(k+1)(k+2)3==右邊(k+1)[(k+1)+1][(k+1)-1]3故當(dāng)n=k+1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 數(shù)學(xué)歸納法典型例題
- 數(shù)學(xué)歸納法典型例題
- 典型例題31-數(shù)學(xué)歸納法解題
- 力法經(jīng)典例題
- 數(shù)學(xué)歸納法
- 1數(shù)學(xué)歸納法
- 數(shù)學(xué)歸納法基礎(chǔ)
- 數(shù)學(xué)歸納法講義
- 計(jì)數(shù)枚舉法經(jīng)典例題講解三
- 數(shù)學(xué)歸納法測(cè)試題及
- 數(shù)學(xué)歸納法的拓廣
- 數(shù)列與數(shù)學(xué)歸納法
- 高等數(shù)學(xué)經(jīng)典方法與典型例題歸納
- 數(shù)列與數(shù)學(xué)歸納法專項(xiàng)訓(xùn)練(含答案)
- 高中數(shù)學(xué)圓錐曲線問(wèn)題常用方法經(jīng)典例題(含答案)
- 數(shù)列極限和數(shù)學(xué)歸納法練習(xí)有答案
- 數(shù)學(xué)歸納法及其應(yīng)用舉例
- 高中數(shù)學(xué) 數(shù)學(xué)歸納法
- 數(shù)學(xué)歸納法與解題之道
- 難點(diǎn)31數(shù)學(xué)歸納法解題
評(píng)論
0/150
提交評(píng)論