版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、12014年山東省普通高等教育專升本考試年山東省普通高等教育專升本考試2014年山東專升本暑期精講班核心講義年山東專升本暑期精講班核心講義高職高專類高職高專類高等數(shù)學高等數(shù)學經典方法及典型例題歸納經典方法及典型例題歸納—經管類專業(yè):會計學、工商管理、國際經濟與貿易、電子商務經管類專業(yè):會計學、工商管理、國際經濟與貿易、電子商務—理工類專業(yè):理工類專業(yè):電氣工程及其自動化、電子信息工程、機械設計制電氣工程及其自動化、電子信息工程、機械設計
2、制造及其自動化、交通運輸、計算機科學與技術、土造及其自動化、交通運輸、計算機科學與技術、土木工程木工程2013年5月17日星期五日星期五曲天曲天堯編寫3【解】【解】xxxxxxxxxxsin1tan1sintanlimsin1tan1lim3030??????????41sintanlim21sintanlimsin1tan11lim30300???????????xxxxxxxxxxx【注】本題除了使用分子有理化方法外,及時分離極限式
3、中的非零因子是解題的關鍵【注】本題除了使用分子有理化方法外,及時分離極限式中的非零因子是解題的關鍵4應用兩個重要極限求極限應用兩個重要極限求極限兩個重要極限是兩個重要極限是和,第一,第一1sinlim0??xxxexnxxxnnxx???????????10)1(lim)11(lim)11(lim個重要極限過于簡單且可通過等價無窮小來實現(xiàn)。主要考第二個重要極限。個重要極限過于簡單且可通過等價無窮小來實現(xiàn)。主要考第二個重要極限。例5:求極
4、限:求極限xxxx???????????11lim【說明】第二個重要極限主要搞清楚湊的步驟:先湊出1,再湊【說明】第二個重要極限主要搞清楚湊的步驟:先湊出1,再湊,最后湊指數(shù)部分。,最后湊指數(shù)部分。X1?【解】【解】2221212112111lim121lim11limexxxxxxxxxxx?????????????????????????????????????????????????????????例6:(1);(2)已知已知,求
5、,求。xxx??????????211lim82lim????????????xxaxaxa5用等價無窮小量代換求極限用等價無窮小量代換求極限【說明】【說明】(1)常見等價無窮小有:常見等價無窮小有:當時0?x~)1ln(~arctan~arcsin~tan~sin~xxxxxx?1ex?;??abxaxxxb~1121~cos12???(2)等價無窮小量代換等價無窮小量代換只能代換極限式中的因式;只能代換極限式中的因式;(3)此方法在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高等數(shù)學典型例題與應用實例重積分b部分
- 高等數(shù)學經典求極限方法
- 高等數(shù)學基礎例題講解
- 高等數(shù)學各章知識要點及典型例題與習題詳細精解
- 數(shù)學歸納法典型例題
- 數(shù)學歸納法典型例題
- 高一數(shù)學集合典型例題、經典例題
- 高一數(shù)學集合典型例題經典例題
- 高等數(shù)學求極限的常用方法(附例題和詳解)
- 高等數(shù)學知識點歸納
- 數(shù)學歸納法經典例題及答案
- 《大學高等數(shù)學經典》ppt課件
- 高等數(shù)學基礎知識點歸納
- 高等數(shù)學(上)重要知識點歸納
- 高等數(shù)學(下)知識點總結歸納
- 高等數(shù)學不定積分例題、思路和答案
- 典型例題31-數(shù)學歸納法解題
- 高等數(shù)學極限方法總結
- 高等數(shù)學論文--論高等數(shù)學
- 高等數(shù)學b2復習(講稿)例題解答
評論
0/150
提交評論