2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩98頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、許多生物、物理和化學(xué)系統(tǒng)都可以用隨機(jī)微分方程描述,并且這些系統(tǒng)不滿足細(xì)致平衡條件。在不滿足細(xì)致平衡條件下構(gòu)造一般的隨機(jī)微分系統(tǒng)的勢函數(shù)在非平衡統(tǒng)計(jì)物理和系統(tǒng)生物醫(yī)學(xué)的研究上有很大的應(yīng)用價值。本文應(yīng)用勢函數(shù)的方法分析了耗散動力系統(tǒng)的動力學(xué)性質(zhì)。由于缺乏一個一般的方法構(gòu)造耗散動力學(xué)系統(tǒng)的“能量”函數(shù)作為Hamiltonian來完全決定系統(tǒng)的動力學(xué)性質(zhì),我們以一個4維線性化的耗散陀螺系統(tǒng)為模型,用Ao的勢函數(shù)構(gòu)造方法構(gòu)造了這個模型的“能量函數(shù)

2、”。這個“能量”函數(shù)就是Lyapunov函數(shù),并且我們證明可以把這個勢函數(shù)作為耗散系統(tǒng)的擴(kuò)展的Hamiltonian。通過分析勢函數(shù)的Hessian矩陣的穩(wěn)定性,我們首先能夠獲得系統(tǒng)狀態(tài)為漸進(jìn)穩(wěn)定的邊界條件;其次,我們獲得了系統(tǒng)為不穩(wěn)定、鞍點(diǎn)和Lyapunov意義下穩(wěn)定的邊界條件。因此,我們構(gòu)造的勢函數(shù)完全決定了耗散陀螺系統(tǒng)的動力學(xué)性質(zhì)。通過對隨機(jī)微分系統(tǒng)解的數(shù)值模擬,我們驗(yàn)證了系統(tǒng)在漸進(jìn)穩(wěn)定狀態(tài)下的穩(wěn)態(tài)分布就是Boltzmann-Gi

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論