版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、中文摘要在本篇論文中,我們首先證明兩個(gè)不等式,然后根據(jù)這兩個(gè)不等式得到幾個(gè)明確的推論,即關(guān)于巡旦型微公立程和超前型微分方程振動(dòng)的判據(jù).其次,給出關(guān)于著名的HuntandYorks猜想在超前型方程的類(lèi)似結(jié)果.最后給出一些關(guān)于超AU型迫友ji振動(dòng)的簡(jiǎn)單的充要條件。特別的,我們得到負(fù)系數(shù)超前型方程振動(dòng)的充要條件是它的特征方程無(wú)實(shí)根.任要結(jié)果及方法簡(jiǎn)析r動(dòng)L一‘一一~.J一、關(guān)于滯后方程:X(t)藝P(t)x(‘一二(‘))=0‘0(1)誣=1
2、的振動(dòng),其中,00存在且大于。,在[c,十0)上連續(xù),其中。7為常數(shù),0c,使得當(dāng)tTo,一r(t)。,i〔I二12,二。成立,則下面的不等式liminft》十儀iyr(t)L幾1Tilt)告藝(O)一,(‘一二(tille‘=1成立。之一成立,則不等式(2)沒(méi)有正解。三、HuntandYorks猜想在超前型方程中的類(lèi)似應(yīng)用考慮方程X(t)一藝pi(t)z(tTi(t))=0t0(3)其中0‘,對(duì)任意的入〔(0十00)成立,方程(3)有
3、一正解‘(t),則存在常數(shù)“)0使“‘liminfy(t)t,,對(duì)任意的A〔(Q十00)成立,則方程(3)振動(dòng).四、關(guān)于超前型自治方程X(t)一藝pix(tTi)=0其中,令。。PiTi為正常數(shù).主要是通過(guò)構(gòu)造一個(gè)逐增數(shù)列m‘,其中=0ml=U=lPim2二Cn1扒產(chǎn),rELIpie“,Mkl=Ei=pie“定理5.方程(4)振動(dòng)的充要條件是存在一個(gè)整數(shù)s011e推論4.定理6.melm$1方程(’)振動(dòng)的充要條件是limk斗千《籠〕M
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 多時(shí)滯中立型微分方程的振動(dòng)性.pdf
- 幾類(lèi)中立型泛函微分方程的振動(dòng)性研究.pdf
- 幾類(lèi)非線性中立型微分方程的振動(dòng)性研究.pdf
- 幾類(lèi)高階中立型微分方程解的振動(dòng)性.pdf
- 橢圓型微分方程解的區(qū)域振動(dòng)性.pdf
- 中立型偏微分方程解的振動(dòng)性.pdf
- 高階非線性中立型微分方程解的振動(dòng)性.pdf
- 三階非線性中立型微分方程的振動(dòng)性.pdf
- 中立型微分方程與積分微分方程適度解的存在性.pdf
- 中立型微分方程的非振動(dòng)解問(wèn)題.pdf
- 15748.幾類(lèi)中立型時(shí)滯微分方程的振動(dòng)性
- 11661.時(shí)滯型微分方程解的振動(dòng)性
- 歐拉型無(wú)界時(shí)滯微分方程的振動(dòng)性研究.pdf
- 脈沖微分方程的振動(dòng)性.pdf
- 幾類(lèi)微分方程的振動(dòng)性.pdf
- 二階半線性常微分方程和脈沖微分方程的振動(dòng)性與非振動(dòng)性.pdf
- 分段連續(xù)混合型微分方程的穩(wěn)定性和振動(dòng)性分析.pdf
- 具有連續(xù)型時(shí)滯非線性微分方程振動(dòng)性的研究.pdf
- 一類(lèi)中立型雙曲微分方程的強(qiáng)迫振動(dòng)性.pdf
- 高階脈沖微分方程的振動(dòng)性.pdf
評(píng)論
0/150
提交評(píng)論