2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、伴隨矩陣相關(guān)問題求解方法小結(jié)(伴隨矩陣相關(guān)問題求解方法小結(jié)(2)來源:文都教育來源:文都教育在一部分求矩陣的行列式的題目中,會將其與伴隨矩陣相結(jié)合進行考查.根據(jù)性質(zhì),很容易得到伴隨矩陣的行列式,即AAAAAE??若為n階矩陣,則.A1nAA??例1設(shè),為n階矩陣,,,則.AB2A?3B??12AB??解由,,及,得到nkAkA?1AAA??1nAA??11BB??.12AB??12AB??2(1)nAB??12nnAB??2123n??

2、伴隨矩陣的每個元素都是原矩陣的代數(shù)余子式,使得伴隨矩陣與矩陣之間有各種AA聯(lián)系.與伴隨矩陣相關(guān)的另一個重要的知識點是求矩陣的秩.矩陣的秩與其伴隨矩陣AA的秩之間有如下關(guān)系:設(shè)為n(n2)階方陣則表示秩().A?()rA?()1()10()1.nrAnrAnrAn??????????()rAA上述關(guān)系在解與伴隨矩陣相關(guān)的求解矩陣的秩的題目應(yīng)用廣泛,不僅要會求已知矩陣的秩求矩陣的秩,還要會求已知矩陣的秩求矩陣的秩,應(yīng)該在理解的基礎(chǔ)上熟AAA

3、A記,遇到同類題目可直接應(yīng)用,將會對解題提供很大的便利.例2設(shè)四階方陣的秩為2,則其伴隨矩陣的秩為.AA解根據(jù)上述矩陣的秩與其伴隨矩陣的秩之間的關(guān)系,因為的秩為24,因此AAA可得矩陣的秩為0.A例3設(shè)是n階可逆矩陣,是的伴隨矩陣,常數(shù)k≠0,則等于().AAA1()kA?A.B.C.D.1kAA?11kAA??111kAA???11kAA??解因為可逆,所以,從而A1AAA??111()()kAkA????111()kAA????11

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論