mba論文面向零售業(yè)的關(guān)聯(lián)規(guī)則動態(tài)挖掘算法研究pdf_第1頁
已閱讀1頁,還剩68頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、南京航空航天大學(xué)碩士學(xué)位論文面向零售業(yè)的關(guān)聯(lián)規(guī)則動態(tài)挖掘算法研究姓名:閆珍申請學(xué)位級別:碩士專業(yè):計算機科學(xué)與技術(shù)指導(dǎo)教師:皮德常2010-12面向零售業(yè)的關(guān)聯(lián)規(guī)則動態(tài)挖掘算法研究 II Abstract With the development of barcode technology and the popularity of POS (Point Of Sells) systems, tremendous business op

2、portunities hold in daily transactions of the retail business. As one of the most active research method about data mining, association rule mining technique has been applied to the field of retailing. However, the tradi

3、tional association analysis algorithms cannot efficiently handle these retail data for its features such as complex structure, mass storage and dynamic update with the time. Therefore, it urgently needs to design a targe

4、ted data mining algorithms to analyze retail dataset. In this paper, we research the processing of complex data types, assessing of different modes and analyzing of mining results, thus solved the problems in transaction

5、 data. The main contributions of this dissertation are as follows: Firstly, to deal with the problem that the Apriori algorithm can handle sparse itemset which contain huge short models but runtime is not efficiency, a f

6、requent itemsets mining algorithm based on High-dimensional Sparse dataset named FIHS is proposed and meantime derive a new structure to store frequent itemsets based on Apriori algorithm. FIHS only scan the dataset once

7、 and can avoid generating infrequent candidate itemsets through optimizing the operation of connection and pruning. According to theoretical analysis and experiments, FIHS algorithm enjoys many advantages aiming at high-

8、dimensional sparse dataset, such as quick mining, less memory space, etc. Secondly, to solve the problem of efficiently maintenance frequent itemsets while the data dynamically update and the parameters have changed, a q

9、uick update algorithm named SWFIUA is proposed. The algorithm uses the concept of sliding time window to minimize the times of scanning dataset and reduce the number of candidate itemset. Experimental results show that,

10、SWFIUA algorithm improve the efficiency and also is simple, easy to maintain. Thirdly, the interestingness measure of Consine is introduced to improve the interest of mining rules based on the traditional framework of Su

11、pport-Confidence. Then, a mining algorithm IMAR based on the association rules of interestingness measures is proposed. The algorithm limits the format of the generated rules, redefines the conception of strong rule and

12、divides the rules into (positive) strong rules, (positive) weak rules and anti-rules. At the same time, to make better use of association rules to optimize business, “CompetItems model” and “MaxProfit model” are proposed

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論