2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩151頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、近十年來微分方程與動力系統(tǒng)在理論研究、數(shù)值計算和實際應用等方面得到了前所未有的發(fā)展,特別是非線性微分方程、隨機微分方程以及非線性動力系統(tǒng)、隨機動力系統(tǒng)的蓬勃發(fā)展。這些都極大地推動了科學技術(shù)的發(fā)展,為定性分析解決問題提供了強大的理論支持。實際上微分方程起源于對物理學和相關(guān)實際問題的研究,這使得微分方程發(fā)展具有廣泛的背景材料,這也使得微分方程模型具有極大的普遍性、有效性和非常豐富的數(shù)學內(nèi)涵。目前微分方程建模、求解已成為解決工程實際問題最有效

2、的處理手段之一。
   本論文研究了幾類微分方程系統(tǒng)的數(shù)值解法和一些相關(guān)的動力學行為。論文大致可分為兩部分。
   第一部分由前兩章構(gòu)成。
   第一章介紹了微分方程與動力系統(tǒng)的研究背景和發(fā)展現(xiàn)狀,同時還介紹了這一領域中一些尚未解決的問題。
   第二章研究了一類帶有復雜邊界條件的系統(tǒng)問題,即單一平面電容傳感器檢測木材含水率模型問題。主要研究刻畫此實際問題的微分方程數(shù)學模型(帶有復雜邊界條件的三維Lapl

3、ace方程邊值問題)以及此微分方程的數(shù)值求解。主要涉及靜電場理論,偏微分方程數(shù)值解理論,病態(tài)線性代數(shù)方程組求解技術(shù),數(shù)值積分奇異性處理與正則化技術(shù)等。通過實驗和計算相結(jié)合的手段最終得到電容傳感器電容值C與被測木材含水率的函數(shù)關(guān)系HΥ=g(C)。
   第三章主要研究非線性動力系統(tǒng)問題(多維非線性偏微分方程初邊值問題)的長時間數(shù)值計算和相應動力性質(zhì)。主要研究了具有實際物理背景的非線性發(fā)展方程,包括一維EFK方程、二維GKS方程、三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論