版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、目前,在算子代數上對導子與約當導子之間的關系的研究越來越受到人們的關注,成為當今算子代數的一個非?;钴S的研究領域之一。K.R.Davidson的專著《Nest Algebras》系統(tǒng)地總結了前20年的研究成果,提出了許多新的問題,極大地推動了套代數的研究,進而也推動了非自伴算子代數的研究。近幾年來,國內外很多學者在各種算子代數上討論了導子與約當導子之間的關系、導子與約當導子的局部特征等問題,其研究方法豐富多樣,并且已經取得一系列深刻的成
2、果,形成本研究領域的一個新亮點。
例如:1957年,Herstein證明了從2-非撓的素環(huán)到其自身上的約當導子都是導子;2009年,R.Alizadeh證明了從全矩陣代數Mn(A)到Mn(M)的約當導子都是導子;1990年,D.R.Larson和A.R.Sourour研究了在Banach代數上局部導子和局部自同構的問題,并且證明了在B(X)上的每個局部導子都是內導子;1998年,張建華證明了在套代數上的每個約當導子都是導子
3、;2007年,朱軍證明了在算子代數中所有的可逆算子是全可導點;2008年,朱軍和熊昌萍證明了在上三角代數中,除了零點之外的其他點都是全可導點;在同一年里,朱軍和熊昌萍又證明了在復可分Hilbert空間上連續(xù)套代數中,所有到套中的閉子空間上的正交算子都是全可導點;2009年,朱軍證明了在矩陣代數上除了零點之外的其他點都是全可導點,等等。
在對導子與約當導子的研究成果逐漸成熟與完善的同時,人們開始把眼光和精力投注于對高階導子和
4、廣義導子的研究。比如:2011年,曾紅艷和朱軍證明了:(1)如果D=(δi)I∈N是Banach代數上在可逆元X處的高階可導映射,那么D是約當高階導子;(2)在非平凡套代數上每個可逆算子都是高階全可導點。這是高階導子和約當高階導子的局部特征的第一個研究成果,本人從中深受啟發(fā),于是討論了在套代數上0點的高階可導映射,以及von Neumann代數的一些特殊點上的高階可導映射。
本文共五章,第一章是緒論,簡單的介紹文中所涉及的
5、概念、記號、基本性質和定理。第二章是主要研究成果之一,在這一章里,假設A和B分別是含有單位元I1和I2的環(huán),M是(A,B)-雙模,那么T={(X W O Y)∶X∈A,Y∈B,W∈M}在通常的矩陣加法和乘法下構成三角代數。證明了如下結論:在三角代數T上的廣義約當高階導子是廣義高階導子。第三章主要證明了:在套代數中,當dn(I)=0時,0點是高階全可導點。第四章主要證明了如下幾個結論:在von Neumann代數中,(1)單位元I是高階全
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 導子和約當導子的局部特征.pdf
- 一點處高階可導和約當高階可導的特征
- 一點處高階可導和約當高階可導的特征.pdf
- 算子代數上若爾當高階導子和導子的刻畫.pdf
- 算子代數上約當導子和李導子的特征.pdf
- 30645.環(huán)上jordan高階導子的某些刻畫
- 27735.若爾當導子和廣義若爾當導子的hyersulam穩(wěn)定性
- 28479.三角代數上的非線性jordan高階導子
- 37579.算子代數上lieξ導子、左導子及2局部導子的刻畫
- 素環(huán)上的導子和廣義導子.pdf
- 代數上局部冪零導子的性質.pdf
- 27734.廣義導子、雙重導子和李雙重導子的穩(wěn)定性
- 環(huán)上的左導子與Jordan左導子.pdf
- 高階項目反應模型估計子分數
- 雙重導子和Jordan雙得導子的研究.pdf
- 高階項目反應模型估計子分數.pdf
- 固定點處的高階可導映射.pdf
- 量子環(huán)面上斜導子李代數模的導子.pdf
- 1522.b(x)上的jordan導子和lie導子
- 36940.算子代數上的2一局部導子和漸近2一局部導子
評論
0/150
提交評論