金融學(xué)專業(yè)外文翻譯---巴西股票價(jià)格與匯率之間關(guān)系的實(shí)證分析_第1頁
已閱讀1頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、<p>  本科畢業(yè)論文外文原文</p><p>  外文題目:THE DYNAMIC RELATIONSHIP BETWEEN STOCK PRICES AND EXCHANGE RATES: EVIDENCE FOR BRAZIL </p><p>  出 處:International Journal of

2、 Theoretical and Applied Finance </p><p>  作 者:BENJAMIN M. TABAK </p><p>  This paper studies the dynamic relationship between stock pri

3、ces and exchange rates in the Brazilian economy. We use recently developed unit root and cointegration tests, which allow endogenous breaks, to test for a long run relationship between these variables. We performed linea

4、r, and nonlinear causality tests after considering both volatility and linear dependence. We found that there is no long run relationship, but there is linear Granger causality from stock prices to exchange rates, in li&

5、lt;/p><p>  Keywords: Stock prices; exchange rates; bivariate causality; nonlinear causality.</p><p>  1. Introduction</p><p>  The literature that studies the relationship between exc

6、hange rates and stock prices is far from conclusive. There are two main theories that relate these financial markets. The first is the traditional approach, which concludes that exchange rates should lead stock prices. T

7、he transmission channel would be exchange rate fluctuations which affect firm’s values through changes in competitiveness and changes in the value of firm’s assets and liabilities, denominated in foreign currency, ultima

8、tely</p><p>  Alternatively, changes in stock prices may influence movements in exchange rates via portfolio adjustments (inflows/outflows of foreign capital). If there were a persistent upward trend in stoc

9、k prices, inflows of foreign capital would rise. 1Even firms that are not internationally integrated (low ratio of exports and imports to total sales and a low proportion of foreign currency-denominated assets and liabil

10、ities) may be indirectly affected.</p><p>  However, a decrease in stock prices would induce a reduction in domestic investor’s wealth, leading to a fall in the demand for money and lower interest rates, cau

11、sing capital outflows that would result in currency depreciation. Therefore, under the portfolio approach, stock prices would lead exchange rates with a negative correlation.</p><p>  In January 1999, Brazil

12、 abandoned the crawling peg and target zone regimes and adopted a floating exchange rate.2 From January 14 to March 3, the Brazilian Real depreciated drastically, 49.51%. The BOVESPA Index (the S?ao Paulo Stock Exchange

13、Index, the most important stock index in the country) increased 4.097 points in the same period (59.34% rise). This effect on the domestic stock index is very different from that observed in Asian economies at the start

14、of the Asian crisis. Therefore, the B</p><p>  The rapid increase of the stock index could have occurred because economic worldwide believed that the currency was overvalued, and that depreciation would lead

15、 to an increase in firm competitiveness, enhancing exports and raising profits. Moreover, many firms that comprise the stock index have American DepositoryReceipts (ADR); these stock prices would respond almost immediate

16、ly through arbitrage mechanisms, since, with the rapid depreciation, domestic traded stockswould be very cheap vis-a-vis</p><p>  We analyze the dynamics between the stock index and the exchange rate using l

17、inear, and nonlinear, Granger causality tests. We employ series filtered for volatility and linear dependence when performing the nonlinear causality tests. We make use of newly developed unit root and cointegration test

18、s, which allow endogenous breaks, to test for a long-run equilibrium relationship between these variables. Furthermore, we use impulse response functions to test the validity of both the traditional and </p><p

19、>  This paper is organized as follows. In the next section, we present a brief literature review and the main findings in developed and emerging countries. Section 3 presents the data and methodology employed. Section

20、 4 shows the empirical evidence for the interdependencies between stock prices and exchange rates in Brazil. Section 5 concludes the paper and gives some directions for further research.</p><p>  2. Literatu

21、re Review</p><p>  The relationship between exchange rates and stock prices is of great interest to many academics and professionals, since they play a crucial role in the economy. Nonetheless, results are s

22、omewhat mixed as to whether stock indexes lead exchange</p><p>  rates or vice versa and whether feedback effects (bi-causality) even exist among these financial variables.</p><p>  Campa et al.

23、 [11] studied the credibility of the crawling peg and target zone (maxiband) regimes and have a nice description of the period prior to the maxi-devaluation of the Real in 1999. Dynamic Relationship Between Stock Prices

24、and Exchange Rates 1379</p><p>  Aggarwal [4] argued that changes in exchange rates provoke profits or losses in the balance sheet of multinational firms, which induces their stock prices to change. In this

25、case, exchange rates cause changes in stock prices (traditional approach).</p><p>  Dornbusch [14] and Boyer [10] presented models suggesting that changes in stock prices and exchange rates are related by ca

26、pital movements. Decreases in stock prices reduce domestic wealth, lowering the demand for money and interest rates, inducing capital outflows and currency depreciation.</p><p>  Bahmani-Oskooee and Sohrabia

27、n [6] analyzed the relation between stock prices and exchange rates in the US economy. They found no long-run relationship among these variables, but a dual causal relationship in the short-run using Granger [16] causali

28、ty tests.3 Amihud [5] and Bartov and Bodnar [7] found that lagged, and not contemporaneous, changes in US dollar exchange rates, explain firms current stock returns.</p><p>  Ratner [29] applied cointegratio

29、n analysis to test whether US dollar exchange rates affect US stock prices, using monthly data from March 1973 to December 1989. His results indicated that the underlying long-term stochastic properties of the US stock i

30、ndex and foreign exchange rates are not related, since the null of no cointegration could not be rejected, even when dividing the sample into sub-periods.</p><p>  Ajayi and Mougou′e [3] analyzed the relatio

31、nship between stock prices and exchange rates in eight advanced economies (Canada, France, Germany, Italy, Japan, the Netherlands, the United Kingdom and the United States).4 Using an error correction model, they found s

32、ignificant short and long run feedback between these two variables.</p><p>  Abdalla and Murinde [1] investigated interactions between exchange rates and stock prices in India, Korea, Pakistan, and the Phili

33、ppines. Using monthly observations in the period from January 1985 to July 1994. Within an error correction model framework, they found evidence of unidirectional causality from exchange rates to stock prices in all coun

34、tries, except for the Philippines. There, they found that stock prices Granger influence exchange rates.</p><p>  Ong and Izan [28] used weekly data of “spot and 90-day forward” exchange rates for Australia

35、and the G-7 countries and “spot and 90-day forward” futures prices for equity prices in Australia, Britain, France and the US, during the period from October 1986 to December 1992. They were unable to find a significant

36、relationship</p><p>  between equity and exchange rate markets. They suggested that the use of daily data (or even intra-day) could improve their empirical results.</p><p>  Ajayi et al. [2] use

37、d daily data and reported that causality runs from the stock market to the currency market in Indonesia and the Philippines, while in Korea it runs in the opposite direction. No significant causal relation is observed in

38、 They use the S&P 500, the effective exchange rate, and monthly data over the period from July 1973 to December 1988. Their sample runs from April 1985 to July 1991. Hong Kong, Singapore, Thailand, or Malaysia. Howev

39、er, in Taiwan, they detected bi-directional </p><p>  Granger et al. [17] found strong feedback relations between Hong Kong, Malaysia, Thailand and Taiwan. They used daily data and their sample period starte

40、d January 3, 1986 and finished June 16, 1998. Furthermore, they found that the results are in line with the traditional approach in Korea, while they agree with the portfolio approach in the Philippines.</p><p

41、>  Nieh and Lee [26] found no significant long-run relationship between stock prices and exchange rates in G-7 countries, using both the Engle-Granger and Johansen’s cointegration tests.6 Furthermore, they found ambig

42、uous, and significant, shortrun relationships for these countries. Nonetheless, in some countries, both stock indexes and exchange rates may serve to forecast the future paths of these variables. For example, they found

43、that currency depreciation stimulates Canadian and UK stock market</p><p>  In general, empirical findings suggest that there are no long-run equilibrium relationships between these two financial variables (

44、exchange rates and stock prices) in most countries. However, many studies have found that these variables have “predictive ability” for each other, although the direction of causality seems to depend</p><p>

45、  on specific characteristics of the country analyzed. To the best of our knowledge, this is the first paper that addresses this issue in the Brazilian economy.</p><p>  3. Data and Methodology</p>&l

46、t;p>  The data, obtained from Bloomberg, consists of 1,922 observations, from August 1, 1994 to May 14, 2002, of daily closing prices in the S?ao Paulo Stock Exchange Index (IBOVESPA) and foreign exchange rate (units

47、of Real per US dollar). We use daily data since the use of monthly data may not be adequate to capture the effects of capital movements</p><p>  1、Unit roots</p><p>  We used the Augmented Dicke

48、y and Fuller [13] (ADF) test for unit roots, using both a trend and an intercept. In general, an ADF(p) model is given by</p><p>  ΔXt = α + (1 ? φ)Xt?1 + γt +ΣβiΔXt?i + εt.(3.1)</p><p>  The Ba

49、yesian Schwarz Information criterion was used to choose the order of lags (p) in Eq. (3.1). Furthermore, we imposed an additional requirement, that the resulting model has white noise residuals. If the resulting model ha

50、s serial correlation, the order of lags is augmented until residuals with no serial correlation are obtained.</p><p>  Since the failure to reject the null of a unit root may be due to the low power of unit

51、root tests against stationary alternatives, Kwiatkowski, et al. [22] proposed a test where the null is stationary and the alternative is a unit root. This test is given by</p><p>  KPSS =1/T2ΣS2t/S2(L)</

52、p><p>  Where ST=Σei (t=1,2,3,……T)</p><p>  And S2=1/TΣ(e2t)+2/TΣ(1-S/(L+1))Σ(etet-s)</p><p>  The residuals are given by the e_i s, T is the number of observ

53、ations and L is the laglength.</p><p>  譯 文:巴西股票價(jià)格與匯率之間關(guān)系的實(shí)證分析</p><p>  本文研究在巴西經(jīng)濟(jì)中股價(jià)與匯率的動(dòng)態(tài)關(guān)系,我們使用單位根檢驗(yàn)和協(xié)整關(guān)系檢驗(yàn)來研究主要變量之間的長期關(guān)系。同時(shí)在考慮波動(dòng)性和線性關(guān)系的基礎(chǔ)上,我們還使用線性因果關(guān)系檢驗(yàn)和非線性因果關(guān)系檢驗(yàn)。通過檢驗(yàn),我們發(fā)現(xiàn),兩者之間沒有任何長期關(guān)系,但按照

54、投資組合的方法可以得出股價(jià)與匯率之間是呈負(fù)相關(guān)的,股票價(jià)格對(duì)匯率存在線性格蘭杰因果關(guān)系。此外,我們還發(fā)現(xiàn)按照傳統(tǒng)的方法發(fā)現(xiàn)匯率對(duì)股票價(jià)格存在非線性格蘭杰因果關(guān)系。我們認(rèn)為,這些發(fā)現(xiàn)對(duì)國際投資者和政策制定者有著實(shí)際的用處。</p><p>  關(guān)鍵詞:股票價(jià)格,匯率,二元因果關(guān)系,非線性因果關(guān)系</p><p><b>  1、介紹</b></p><

55、;p>  本文所用的文獻(xiàn)中主要是通過遠(yuǎn)離定律研究匯率與股價(jià)之間的關(guān)系。它涉及兩個(gè)主要的金融市場的理論。首先是傳統(tǒng)做法的理論,它認(rèn)為匯率變動(dòng)會(huì)導(dǎo)致股票價(jià)格的變動(dòng)。匯率波動(dòng)對(duì)股權(quán)價(jià)值的的影響是通過以外幣計(jì)價(jià)的公司的資產(chǎn)和負(fù)債的價(jià)值的變化最終引起公司的利潤的改變而實(shí)現(xiàn)的。而另一種方法是投資組合的方法理論,在投資組合的方法中通過調(diào)整利率使得股票價(jià)格的變化可能對(duì)匯率的變化帶來影響。如果保持股票價(jià)格持續(xù)上升的趨勢,將會(huì)導(dǎo)致國外資本的流入的增加

56、。而在股票價(jià)格下跌的時(shí)候,會(huì)引起國內(nèi)投資者的資產(chǎn)的外流,導(dǎo)致貨幣需求和利率的下降,而資本的外流使得國內(nèi)貨幣的貶值。因此,在投資組合的方法下,股票價(jià)格和匯率之間是呈負(fù)相關(guān)。</p><p>  1999年1月,巴西放棄了固定匯率制度,而選擇使用浮動(dòng)匯率制度。在1月14日至3月3巴西貨幣大幅貶值了49.51%,巴西證券交易所指數(shù)在同一時(shí)期上升了4.097個(gè)百分點(diǎn)(即上升了59.34%)。亞洲經(jīng)濟(jì)學(xué)家從巴西股價(jià)指數(shù)變化

57、對(duì)國內(nèi)經(jīng)濟(jì)的產(chǎn)生了重大的影響中觀察到了這是亞洲經(jīng)濟(jì)危機(jī)的開始。因此,巴西的情況為我們提供了一個(gè)學(xué)習(xí)股票價(jià)格與匯率動(dòng)態(tài)關(guān)系的好機(jī)會(huì)。</p><p>  巴西股票指數(shù)的快速增長的基礎(chǔ)是經(jīng)濟(jì)的快速增長,在全世界都認(rèn)為貨幣價(jià)值是被高估時(shí),貨幣的貶值將會(huì)給企業(yè)提供更多的出口量和利潤,增加企業(yè)的競爭力。此外,許多公司的股票指數(shù)的構(gòu)成包括美國存托憑證收據(jù)(ADR),因此在面對(duì)貨幣貶值的時(shí)候這些股票價(jià)格使用套利機(jī)制幾乎會(huì)立即做

58、出反應(yīng),使得國內(nèi)交易的股票的價(jià)格在面對(duì)美國存托憑證收據(jù)時(shí)會(huì)變得很廉價(jià)。</p><p>  我們通過對(duì)股票價(jià)格與匯率之間的線性檢驗(yàn),非線性檢驗(yàn)及格蘭杰因果關(guān)系檢驗(yàn)對(duì)兩者之間的關(guān)系進(jìn)行分析。我們對(duì)有波動(dòng)的數(shù)據(jù)采用線性和非線性因果關(guān)系檢驗(yàn)的方法進(jìn)行檢驗(yàn)。我們采用新開發(fā)的單位根和協(xié)整檢驗(yàn),用來測試這些變量之間的長期均衡關(guān)系。此外,我們還使用脈沖響應(yīng)函數(shù)來測試傳統(tǒng)和組合的兩種方法對(duì)匯率與股價(jià)指數(shù)兩者之間關(guān)系的研究結(jié)果。&

59、lt;/p><p>  本文敘述如下,在下一節(jié)中,我們提出了一個(gè)簡短的主要針對(duì)對(duì)發(fā)達(dá)國家和新興國家的研究結(jié)果的分析。第三節(jié),介紹了數(shù)據(jù)和方法的應(yīng)用。第四節(jié)給出了對(duì)巴西的股價(jià)和匯率之間的相互關(guān)系的實(shí)證結(jié)果。第五節(jié)總結(jié)本文,并給出了結(jié)論和進(jìn)一步研究方向。</p><p><b>  2、文獻(xiàn)</b></p><p>  許多學(xué)者和專業(yè)人士對(duì)匯率和股票價(jià)

60、格之間的關(guān)系非常感興趣,而且他們的研究在經(jīng)濟(jì)發(fā)展中發(fā)揮了關(guān)鍵作用。然而,研究的結(jié)果包括多種,股價(jià)指數(shù)與匯率之間可能存在股價(jià)指數(shù)變動(dòng)導(dǎo)致匯率的變動(dòng),或者反之匯率的變化導(dǎo)致股價(jià)指數(shù)的變化,或者兩者是雙向的關(guān)系。</p><p>  Aggarwal認(rèn)為,匯率變動(dòng)引起跨國公司的資產(chǎn)負(fù)債表上利潤或虧損的變動(dòng),從而引起其股票價(jià)格的變動(dòng)。這這種情況下,他認(rèn)為匯率的變動(dòng)會(huì)引起股票價(jià)格的變化(傳統(tǒng)方法)。</p>

61、<p>  Dornbusch和Boyer提出了一個(gè)表明股票價(jià)格與匯率相關(guān)的資本流動(dòng)變動(dòng)的模型。在股票價(jià)格下跌的時(shí)候,使得國內(nèi)的資本外流,降低了國內(nèi)貨幣的需求導(dǎo)致利率的下降,導(dǎo)致資本外流和貨幣貶值。</p><p>  Bahmani-Oskooee和Sohrabian分析了美國國內(nèi)經(jīng)濟(jì)中的股價(jià)和匯率之間的關(guān)系。他們沒有得出在長期關(guān)系中兩者的相關(guān)關(guān)系,但他們使用了格蘭杰因果關(guān)系檢驗(yàn)得出了短期內(nèi)兩者之間的

62、關(guān)系。Amihud,Bartov和Bodnar發(fā)現(xiàn)在不同時(shí)期,由于美元匯率的變化無法表明公司目前的股票收益率,所以兩者之間的關(guān)系是滯后的。</p><p>  Ratner通過對(duì)1973年3月至1989年12月月度數(shù)據(jù)進(jìn)行協(xié)整分析來測試美元匯率對(duì)美國股價(jià)的影響。他的研究結(jié)果表明,在長期中,美國股票價(jià)格與匯率之間是不存在因果關(guān)系的,因?yàn)榧词故欠謺r(shí)段的樣本都無法得到兩者之間的協(xié)整的關(guān)系。</p><

63、;p>  Ajayi和Mougoue使用誤差修正模型分析了八個(gè)國家的股票價(jià)格與匯率之間的關(guān)系(加拿大,法國,德國,意大利、日本,荷蘭,英國和美國),他們發(fā)現(xiàn)這兩個(gè)變量之間顯著的短期和長期的關(guān)系。</p><p>  Abdalla 和 Murinde使用從1985年1月至1994年7月期間的月度數(shù)據(jù)研究印度,韓國,巴基斯坦,菲律賓的四國的匯率與股價(jià)之間的關(guān)系。在一個(gè)誤差修正模型的框架中,他們證實(shí)了除菲律賓以

64、外的三個(gè)國家都存在股價(jià)與匯率之間的單向因果關(guān)系。他們通過格蘭杰因果關(guān)系檢驗(yàn)驗(yàn)證了匯率與股價(jià)之間的關(guān)系。</p><p>  Ong 和 Izan使用1986年10月至1992年12月的澳大利亞和G - 7個(gè)國家的每周的“當(dāng)前90天的點(diǎn)數(shù)”以及在澳大利亞,英國,法國和美國的“當(dāng)前90天的點(diǎn)數(shù)”的期貨價(jià)格對(duì)兩者之間的關(guān)系進(jìn)行研究。他們無法找到兩者之間的明顯的關(guān)系。他們猜想,使用日常的數(shù)據(jù)可能可以改善他們的試驗(yàn)結(jié)果。&

65、lt;/p><p>  Ajayi等人使用印度尼西亞和菲律賓的每日的數(shù)據(jù)對(duì)其股市和匯率之間的因果關(guān)系進(jìn)行分析,同時(shí)認(rèn)為韓國的匯率與股市之間的因果關(guān)系是與上述兩個(gè)國家相反的,而通過對(duì)香港,新加坡,泰國和馬來西亞的數(shù)據(jù)的觀察作者認(rèn)為在這些國家兩者之間沒有因果關(guān)系,但,在臺(tái)灣,他們認(rèn)為兩者之間存在雙向的因果關(guān)系。此外,同期在這八個(gè)國家中的只有三個(gè)國家兩者之間的關(guān)系有顯著的調(diào)整。而在發(fā)達(dá)國家中,他們發(fā)現(xiàn)貨幣市場和股票市場之間

66、有著顯著的單向因果關(guān)系。</p><p>  Granger等人使用香港,馬來西亞,泰國和臺(tái)灣從1986年1月3日到1998年6月16日的每日的數(shù)據(jù),發(fā)現(xiàn)匯率與股價(jià)指數(shù)之間有著顯著的雙向因果關(guān)系。此外,他們還發(fā)現(xiàn)對(duì)韓國的數(shù)據(jù)的研究的結(jié)果是與傳統(tǒng)的方法相一致的,但他們更加同意像菲律賓那樣的投資組合的方法。</p><p>  Nieh和Lee使用恩格爾- Granger和Johansen的協(xié)

67、整檢驗(yàn)發(fā)現(xiàn)在G - 7個(gè)國家中股票價(jià)格和匯率之間不存在長期的因果關(guān)系。此外,他們還發(fā)現(xiàn)這些國家在短期內(nèi)沒有確切的因果關(guān)系。然而,在一些國家中,無論是股票指數(shù)還是匯率都可以對(duì)一些變量進(jìn)行預(yù)測。例如,他們發(fā)現(xiàn)在加拿大和英國貨幣的貶值會(huì)刺激股價(jià)在一天后上升。</p><p>  實(shí)證研究表明,一般而言,大多數(shù)國家的這兩個(gè)金融變量(匯率與股票價(jià)格)之間是沒有長期均衡關(guān)系的。然而,許多的研究發(fā)現(xiàn),雖然兩者之間的因果關(guān)系的方

68、向是根據(jù)該國具體特點(diǎn)所得出的,但這些變量具有“為對(duì)方進(jìn)行預(yù)測的能力”。據(jù)我們所知,這篇文章是第一篇為巴西經(jīng)濟(jì)解決這個(gè)問題的論文。</p><p><b>  數(shù)據(jù)和實(shí)證方法</b></p><p>  我們的研究數(shù)據(jù)是使用1994年8月1日至2002年5月14日巴西證券交易所每日收盤價(jià)的股價(jià)指數(shù)和每日的匯率。因?yàn)槿绻覀兪褂玫脑露葦?shù)據(jù)可能不足以發(fā)現(xiàn)其對(duì)資本流動(dòng)的影響。

69、</p><p><b>  1、單位根檢驗(yàn)</b></p><p>  我們用Augmented Dickey 和 Fuller(ADF)檢驗(yàn),一般來說,一個(gè)ADF(p)模型可表示為</p><p>  ΔXt = α + (1 ? φ)Xt?1 + γt +ΣβiΔXt?i + εt.(3.1)</p><p>  

70、用施瓦茨貝葉斯準(zhǔn)則來選擇滯后變量(p)。如果得到的模型是與滯后數(shù)列序列相關(guān)的,那么除了滯后變量外,模型中還存在一個(gè)殘差項(xiàng)。</p><p>  由于固定替代品的出現(xiàn),使得Kwiatkowski等的單位根檢驗(yàn)無法通過,因此,他們提出了通過讓空一個(gè)固定的替代品來作為單位根進(jìn)行檢驗(yàn),這項(xiàng)測試是給出以下的方程:KPSS =1/T2ΣS2t/S2(L),其中ST=Σei (t=1,2,3,……T)</p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論