22用函數(shù)的觀點(diǎn)看一元二次方程_第1頁(yè)
已閱讀1頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、后安中學(xué)數(shù)學(xué)組后安中學(xué)數(shù)學(xué)組126.2用函數(shù)的觀點(diǎn)看一元二次方程(1)教學(xué)目標(biāo):1通過探索,使學(xué)生理解二次函數(shù)與一元二次方程、一元二次不等式之間的聯(lián)系。2使學(xué)生能夠運(yùn)用二次函數(shù)及其圖象、性質(zhì)解決實(shí)際問題,提高學(xué)生用數(shù)學(xué)的意識(shí)。3進(jìn)一步培養(yǎng)學(xué)生綜合解題能力,滲透數(shù)形結(jié)合思想。重點(diǎn)難點(diǎn):重點(diǎn):使學(xué)生理解二次函數(shù)與一元二次方程、一元二次不等式之間的聯(lián)系,能夠運(yùn)用二次函數(shù)及其圖象、性質(zhì)去解決實(shí)際問題是教學(xué)的重點(diǎn)。難點(diǎn):進(jìn)一步培養(yǎng)學(xué)生綜合解題能力

2、,滲透數(shù)形結(jié)合的思想是教學(xué)的難點(diǎn)教學(xué)過程:一、引言一、引言在現(xiàn)實(shí)生活中,我們常常會(huì)遇到與二次函數(shù)及其圖象有關(guān)的問題,如拱橋跨度、拱高計(jì)算等,利用二次函數(shù)的有關(guān)知識(shí)研究和解決這些問題,具有很現(xiàn)實(shí)的意義。本節(jié)課,請(qǐng)同學(xué)們共同研究,嘗試解決以下幾個(gè)問題。二、探索問題二、探索問題問題1:某公園要建造一個(gè)圓形的噴水池,在水池中央垂直于水面豎一根柱子,上面的A處安裝一個(gè)噴頭向外噴水。連噴頭在內(nèi),柱高為0.8m。水流在各個(gè)方向上沿形狀相同的拋物線路徑

3、落下,如圖(1)所示。根據(jù)設(shè)計(jì)圖紙已知:如圖(2)中所示直角坐標(biāo)系中,水流噴出的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是y=-x2+2x+。45(1)噴出的水流距水平面的最大高度是多少(2)如果不計(jì)其他的因素,那么水池至少為多少時(shí),才能使噴出的水流都落在水池內(nèi)教學(xué)要點(diǎn)1讓學(xué)生討論、交流,如何將文學(xué)語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,得出問題(1)就是求函數(shù)y=-x2+2x+最大值,問題(2)就是求如圖(2)B點(diǎn)的橫坐標(biāo);452學(xué)生解答,教師巡視

4、指導(dǎo);3讓一兩位同學(xué)板演,教師講評(píng)。問題2:一個(gè)涵洞成拋物線形,它的截面如圖(3)所示,現(xiàn)測(cè)得,當(dāng)水面寬AB=1.6m時(shí),涵洞頂點(diǎn)與水面的距離為2.4m。這時(shí),離開水面1.5m處,涵洞寬ED是多少是否會(huì)超過1m教學(xué)要點(diǎn)1教師分析:根據(jù)已知條件,要求ED的寬,只要求出FD的長(zhǎng)度。在如圖(3)的直角坐標(biāo)系中,即只要求出D點(diǎn)的橫坐標(biāo)。因?yàn)辄c(diǎn)D在涵洞所成的拋物線上,又由已知條件可得到點(diǎn)D的縱坐標(biāo),所以利用后安中學(xué)數(shù)學(xué)組后安中學(xué)數(shù)學(xué)組3程x2-x

5、-=0的解。更一般地,函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的橫坐標(biāo)即為方程ax234+bx+c=0的解;當(dāng)二次函數(shù)y=ax2+bx+c的函數(shù)值為0時(shí),相應(yīng)的自變量的值即為方程ax2+bx+c=0的解,這一結(jié)論反映了二次函數(shù)與一元二次方程的關(guān)系。三、試一試三、試一試根據(jù)問題3的圖象回答下列問題。(1)當(dāng)x取何值時(shí),y<0當(dāng)x取何值時(shí),y>0(當(dāng)-<x<時(shí),y<0;當(dāng)x<-或x>時(shí),y>0)12321232(2)能否用含有x的不等式來(lái)描

6、述(1)中的問題(能用含有x的不等式采描述(1)中的問題,即x2-x-<0的解集是什么x2-x->0的解集是什么)3434想一想:二次函數(shù)與一元二次不等式有什么關(guān)系讓學(xué)生類比二次函數(shù)與一元二次不等式方程的關(guān)系,討論、交流,達(dá)成共識(shí):(1)從“形”的方面看,二次函數(shù)y=ax2+bJ+c在x軸上方的圖象上的點(diǎn)的橫坐標(biāo),即為一元二次不等式ax2+bx+c>0的解;在x軸下方的圖象上的點(diǎn)的橫坐標(biāo)即為一元二次不等式ax2+bx+c<0的解。(2)

7、從“數(shù)”的方面看,當(dāng)二次函數(shù)y=ax2+bx+c的函數(shù)值大于0時(shí),相應(yīng)的自變量的值即為一元二次不等式ax2+bx+c>0的解;當(dāng)二次函數(shù)y=ax2+bx+c的函數(shù)值小于0時(shí),相應(yīng)的自變量的值即為一元二次不等式ax2+bc+c<0的解。這一結(jié)論反映了二次函數(shù)與一元二次不等式的關(guān)系。四、課堂練習(xí):四、課堂練習(xí):P23練習(xí)1、2。五、小結(jié):五、小結(jié):1通過本節(jié)課的學(xué)習(xí),你有什么收獲有什么困惑2若二次函數(shù)y=ax2+bx+c的圖象與x軸無(wú)交點(diǎn),

8、試說(shuō)明,元二次方程ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情況。六、作業(yè):六、作業(yè):1.二次函數(shù)y=x2-3x-18的圖象與x軸有兩交點(diǎn),求兩交點(diǎn)間的距離。2已知函數(shù)y=x2-x-2。(1)先確定其圖象的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo),再畫出圖象(2)觀察圖象確定:x取什么值時(shí),①y=0,②y>0;③y<0。3學(xué)校建造一個(gè)圓形噴水池,在水池中央垂直于水面安裝一個(gè)花形柱子OA。O恰好在水面中心,布置

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論