版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、山西財(cái)經(jīng)大學(xué)碩士學(xué)位論文中國(guó)股市股指收益結(jié)構(gòu)性變點(diǎn)與波動(dòng)性建模姓名:孫小冬申請(qǐng)學(xué)位級(jí)別:碩士專業(yè):統(tǒng)計(jì)學(xué)指導(dǎo)教師:王建華2011-05-12中國(guó)股市股指收益結(jié)構(gòu)性變點(diǎn)與波動(dòng)性建模 II Abstract Chinese stock market, an emerging market with only 20 years' history, is apt to be influenced by various outside f
2、actors and shows a great fluctuation in result of our imperfect market mechanism, lagged legal system and immature psychology of investors and so on. Therefore, the intensive study of its fluctuations becomes especially
3、important, and many scholars delve into modeling volatility for share indices returns. The development of modeling volatility has gone through three major stages: the early traditional econometric model under the assumpt
4、ion of fixed variance, later AutoRegressive Conditional Heteroskedasticity (ARCH) model and Stochastic Volatility (SV) model, and newly developmental non-parameter model for high-frequency data. Now the most widely used
5、model is still (G)ARCH-type models, but in the practical application, this model could be combined with structural breaks in time series. On this basis, this paper applies dummy variable of structural breaks in GARCH-typ
6、e models, aims to fit the return series of Shanghai Composite Index and Shenzhen Component Index (which from Dec. 16, 1996 to May 31, 2010). The content mainly contains two aspects: Firstly, detect the structural breaks
7、in variance from two sample series with ICSS algorithm, the essence of which is to construct suitable statistics with a series of recursive residuals, and then simulates its distribution and critical value for hypothesis
8、 test. Secondly, put the change-points as dummy variables into GARCH model to re-fit them, pose a contrast of goodness of fit, degree of forecast in all circumstances to select the optimal one. There are extra factors ne
9、ed to be considered, including risk premium, asymmetric effect and error distribution, etc. The empirical studies of sample indicate that parts of significant events in Chinese stock market have caused variance of share
10、indices returns some structural breaks. Considering these breaks, it is better to make them as dummy variable to join EGARCH(1,1) model, in which, goodness of fit for t-distribution error is higher while degree of foreca
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國(guó)股市波動(dòng)性和風(fēng)險(xiǎn)——基于股指收益率序列變點(diǎn)的分析.pdf
- 中國(guó)股市收益率波動(dòng)性研究.pdf
- 中國(guó)股市波動(dòng)性研究
- 股指期貨對(duì)中國(guó)A股市場(chǎng)波動(dòng)性的影響分析.pdf
- 中國(guó)股市波動(dòng)性分析.pdf
- 中國(guó)股市的波動(dòng)性研究.pdf
- 中國(guó)股票市場(chǎng)股指收益率及波動(dòng)性研究.pdf
- 股指期貨推出對(duì)股市波動(dòng)性影響的研究.pdf
- 上海股市收益率波動(dòng)性實(shí)證分析.pdf
- 基于GJR模型的中國(guó)股市收益率波動(dòng)性研究.pdf
- 基于微觀結(jié)構(gòu)理論的中國(guó)股市波動(dòng)性分析.pdf
- 我國(guó)股指期貨對(duì)股市波動(dòng)性的影響研究.pdf
- 中國(guó)股市的波動(dòng)性及相依性分析.pdf
- 基于雙重差分模型的股指期貨與股市波動(dòng)性研究
- 上海股市波動(dòng)性研究.pdf
- 基于雙重差分模型的股指期貨與股市波動(dòng)性研究.pdf
- 個(gè)股收益率波動(dòng)性與經(jīng)營(yíng)業(yè)績(jī)波動(dòng)性.pdf
- 我國(guó)股指期貨交易對(duì)股市波動(dòng)性影響的研究.pdf
- 金磚國(guó)家股市收益率波動(dòng)性比較研究.pdf
- 國(guó)際股市與我國(guó)滬深股市收益率波動(dòng)性傳遞機(jī)制探討.pdf
評(píng)論
0/150
提交評(píng)論