最小二乘策略迭代算法研究.pdf_第1頁
已閱讀1頁,還剩70頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、強(qiáng)化學(xué)習(xí)是一種通過與環(huán)境的交互,將狀態(tài)映射到動作,以獲取最大累積獎賞的機(jī)器學(xué)習(xí)方法。在大規(guī)模和連續(xù)狀態(tài)或動作空間強(qiáng)化學(xué)習(xí)問題中,通過使用函數(shù)逼近方法擬合策略形成了近似強(qiáng)化學(xué)習(xí)方法。最小二乘策略迭代是一類前沿的近似強(qiáng)化學(xué)習(xí)方法,其最小二乘逼近可以從樣本中獲取更多有效信息,并可以應(yīng)用到在線算法中。本文著眼于在線最小二乘策略迭代算法,對其進(jìn)行了以下幾方面的擴(kuò)展,提出了相應(yīng)的算法:
  (1)針對在線最小二乘策略迭代算法對樣本數(shù)據(jù)利用不充

2、分、每個樣本僅使用一次就被丟棄的問題,提出一種批量最小二乘策略迭代(BLSPI)算法。該算法在線保存生成的樣本數(shù)據(jù),多次重復(fù)使用這些樣本數(shù)據(jù)以更新控制策略,可以有效利用之前的經(jīng)驗知識,提高經(jīng)驗利用率,加快收斂速度。
  (2)針對最小二乘策略評估(LSPE)算法中步長參數(shù)固定或形式單一、缺乏自動性的問題,提出一種自動批量最小二乘策略迭代(ABLSPI)算法。該算法結(jié)合定點步長參數(shù)評估方法,高效地利用樣本數(shù)據(jù)和策略動態(tài)調(diào)整步長參數(shù),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論