已閱讀1頁,還剩53頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、本文主要研究了非局部耦合Schrodinger(薛定諤)系統(tǒng)在有界域和全空間上的解的存在性.文章從帶非局部算子(分數(shù)階Laplace算子)的Schrodinger方程(薛定諤方程屬于量子力學基礎(chǔ)方程,由物質(zhì)波概念和波動方程組合建立的一種二階偏微分方程)出發(fā),首先給出了一些帶分數(shù)階Laplace算子的Schrodinger方程分別在有界域和全空間上的解w的一些性態(tài)等結(jié)論,然后在這些已有結(jié)論的基礎(chǔ)上,采用變分法,分別在有界域和全空間上討論帶
2、分數(shù)階Laplace算子的Schrodinger方程組的解的存在性.方程組如下:
非局部算子Aα的定義如下:
Aαu=∫?(u(x)?u(y))·γ(x,y)dy=?D(D?u),0<α<2.
在有界域上,在維數(shù)N≤3時,本文主要證明了當方程組中的系數(shù)滿足0≤β
在全空間
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 分數(shù)階Schr_dinger算子的自伴性與本質(zhì)譜.pdf
- 分數(shù)階Schr_dinger-Poisson系統(tǒng)解的存在性.pdf
- 空間分數(shù)階導數(shù)的Schr_dinger方程的整體解及吸引子的存在性.pdf
- 分數(shù)次Schr_dinger算子的譜分析.pdf
- 一類分數(shù)階非線性Schr_dinger方程駐波解的存在性與穩(wěn)定性.pdf
- 非線性分數(shù)階Schr_dinger方程的高階守恒算法.pdf
- 非線性Schr_dinger方程組基態(tài)解的存在性.pdf
- 帶短域的分數(shù)階Schrōdinger算子的散射.pdf
- 兩類帶有二次耦合項的Schr_dinger系統(tǒng)正基態(tài)解的存在性.pdf
- 一類擬線性Schr_dinger方程基態(tài)解的存在性.pdf
- 反轉(zhuǎn)Schr_dinger方程的擬周期解.pdf
- 分數(shù)階Schr_dinger方程和分數(shù)階Ginzburg-Landau方程的高效差分方法.pdf
- 漸近線性Schr_dinger方程的解.pdf
- 一類擬線性Schr_dinger方程解的存在性研究.pdf
- 四階Schr_dinger算子預解式的高能估計和低能的漸近展開.pdf
- 分數(shù)階Euler-Lagrange方程與空間分數(shù)階Schr_dinger方程數(shù)值方法.pdf
- 與Schr_dinger算子相關(guān)的幾類算子及其交換子的有界性.pdf
- 一類擬線性Schr_dinger方程解的存在性和多重性.pdf
- 幾類全空間上Schr_dinger型方程解的存在性與多重性.pdf
- Schr_dingeR-Maxwell系統(tǒng)解的存在性與多重性.pdf
評論
0/150
提交評論