版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、MATH413[513](PHILLIPS)SOLUTIONSTOHOMEWK1Generallya“solution”issomethingthatwouldbeacceptableifturnedininthefmpresentedherealthoughthesolutionsgivenareoftenclosetominimalinthisrespect.A“solution(sketch)”istoosketchytobeco
2、nsideredacompletesolutionifturnedinvaryingamountsofdetailwouldneedtobefilledin.Problem1.1:Ifr∈Q0x∈RQprovethatrxrx?∈Q.Solution:Weprovethisbycontradiction.Letr∈Q0supposethatrx∈Q.ThenusingthefieldpropertiesofbothRQwehavex=(
3、rx)?r∈Q.Thusx?∈Qimpliesrx?∈Q.Similarlyifrx∈Qthenx=(rx)r∈Q.(HereinadditiontothefieldpropertiesofRQweuser?=0.)Thusx?∈Qimpliesrx?∈Q.Problem1.2:Provethatthereisnox∈Qsuchthatx2=12.Solution:Weprovethisbycontradiction.Supposeth
4、ereisx∈Qsuchthatx2=12.Writex=mninlowestterms.Thenx2=12impliesthatm2=12n2.Since3divides12n2itfollowsthat3dividesm2.Since3isprime(byuniquefactizationinZ)itfollowsthat3dividesm.Therefe32dividesm2=12n2.Since32doesnotdivide12
5、usingagainuniquefactizationinZthefactthat3isprimeitfollowsthat3dividesn.Wehaveprovedthat3dividesbothmncontradictingtheassumptionthatthefractionmnisinlowestterms.Alternatesolution(Sketch):Ifx∈Qsatisfiesx2=12thenx2isinQsat
6、isfies?x2?2=3.Nowprovethatthereisnoy∈Qsuchthaty2=3byrepeatingtheproofthat√2?∈Q.Problem1.5:LetA?Rbenonemptyboundedbelow.Set?A=?a:a∈A.Provethatinf(A)=?sup(?A).Solution:Firstnotethat?Aisnonemptyboundedabove.IndeedAcontainss
7、omeelementxthen?x∈AmeoverAhasalowerboundm?misanupperboundf?A.Wenowknowthatb=sup(?A)exists.Weshowthat?b=inf(A).That?bisalowerboundfAisimmediatefromthefactthatbisanupperboundf?A.Toshowthat?bisthegreatestlowerboundweletc?bp
8、rovethatcisnotalowerboundfA.Now?c?c.Then?x∈A?x1fixedthroughoutthement:Wewillassumeknownthatthefunctionn?→bnfromZtoRisstrictlyincreasingthatisthatfmn∈Zwehavebm0sobr=(bmq)1(nq)bs=(bnp)1(nq).Nowmqx.Ifr∈Q∩(?∞x]thenbr∈B(k)sot
9、hatbr≤bkbyPart(c).ThusbkisanupperboundfB(x).ThisshowsthatthedefinitionmakessensePart(c)showsitisconsistentwithourearlierdefinitionwhenr∈Q.(d)Provethatbxy=bxbyfallxy∈R.Solution:Indertodothiswearegoingtoneedtoreplacetheset
10、B(x)abovebythesetB0(x)=br:r∈Q∩(?∞x)(thatiswerequirer1N=123....)Proof:Clearly1isalowerbound.(Indeed(b1n)n=b1=1nsob1n1.)Weshowthat1xisnotalowerboundwhenx0.If1xwerealowerboundthen1x≤b1nwouldimply(1x)n≤(b1n)n=bfalln∈N.ByLemm
11、a1wewouldget1nx≤bfalln∈NwhichcontradictstheArchimedeanpropertywhenx0.Lemma3.supb?1n:n∈N=1.Proof:Part(b)showsthatb?1nb1n=b0=1whenceb?1n=(b1n)?1.Sinceallnumbersb?1narestrictlypositiveitnowfollowsfromLemma2that1isanupperbou
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 復(fù)旦版數(shù)學(xué)分析答案
- 數(shù)學(xué)分析試題及答案
- 數(shù)學(xué)分析試題答案
- 數(shù)學(xué)分析試題與答案
- 數(shù)學(xué)分析
- 數(shù)學(xué)分析課后習(xí)題答案14
- 數(shù)學(xué)分析3試卷及答案
- 數(shù)學(xué)分析三試卷及答案
- 數(shù)學(xué)分析2試題及答案
- 數(shù)學(xué)分析51
- 數(shù)學(xué)分析中題庫
- 《數(shù)學(xué)分析》考試大綱
- 《數(shù)學(xué)分析考試大綱》
- 數(shù)學(xué)分析習(xí)題答案第二章
- 微積分及數(shù)學(xué)分析試卷及答案
- 數(shù)學(xué)分析(三)教案(16.1)
- 數(shù)學(xué)分析教學(xué)內(nèi)容
- 容積數(shù)學(xué)分析教案
- 09年數(shù)學(xué)分析
- 愛情婚姻的數(shù)學(xué)分析
評論
0/150
提交評論