版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、湖南大學碩士學位論文幾類線性矩陣方程的加權(quán)最小二乘解及其最佳逼近問題姓名:周立平申請學位級別:碩士專業(yè):應(yīng)用數(shù)學指導教師:李董輝;鄧遠北20070427碩士學位論文 IIIAbstract The constrained linear matrix equations and related least squares problems have wide range of practical applications, includi
2、ng structure design, parameter identification, biology, automatic control theory, vibration theory, finite elements signal processing and so on. Due to this reason, the study in constrained linear matrix equation has tak
3、en good progress, and has become a welcome research topic in computational mathematics. So far, almost all existing research in matrix equation problem focuses on the case where Frobenius norm is used. In this thesis, w
4、e define a weighted Frobenius norm F W WA A = . By the use of singular value decomposition and the dual theory in Hilbert space, we study the solution of the following four problems: Problem I: Given n m R A × ∈ ,
5、 n m R B × ∈ , m m SR W × + ∈ . Find X such that min = ? w B AX , where m m SR × +denotes m-order real symmetric and positive definite matrix. Problem II: Given m n R A × ∈ , m m R B × ∈ ,
6、 m m SR W × + ∈ . Find X such that min = ? wT B XA A . Problem III: Given n n R A × ∈ * . Find E S A∈ ?such that * * min ? A A A AE S A ? = ? ∈ , where E S denotes the solution set of Problem I or Problem
7、II. The main results of this thesis are listed as follows: 1. We derive the expressions of the solution of Problem I and related optimal approximation problem. 2. We also derive the expressions of the solution of Problem
8、 II and related optimal approximation problem. 3. We discuss the least squares symmetric and anti-symmetric solutions of matrix equation D XB BT =on some linear manifold. We also study the related optimal approximation
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 線性流形上幾類矩陣方程的最小二乘解及最佳逼近解.pdf
- 秩約束下幾類特殊矩陣方程最小二乘問題及其最佳逼近問題.pdf
- 幾類約束矩陣方程(組)最小二乘解及最佳逼近的迭代解法.pdf
- 矩陣方程AX+YB=E的最小二乘約束解及其最佳逼近.pdf
- 一類中心對稱矩陣最小二乘解及其最佳逼近問題.pdf
- 幾類矩陣方程的解及其最佳逼近問題.pdf
- 幾類矩陣方程不定最小二乘問題的研究.pdf
- 廣義自反矩陣和廣義反自反矩陣的最小二乘及其最佳逼近問題.pdf
- 幾類循環(huán)矩陣的算法及其反問題的最小二乘解.pdf
- 32574.幾類矩陣方程最小二乘解定秩研究
- 幾類子矩陣約束下的矩陣方程的最小二乘問題.pdf
- 幾類矩陣方程的特殊解及其最佳逼近.pdf
- 幾類特殊線性約束矩陣方程問題及其最佳逼近問題.pdf
- 幾類約束矩陣方程的解及其最佳逼近.pdf
- 5701.幾類矩陣方程最小二乘問題的數(shù)值算法研究
- 幾類子陣約束下矩陣反問題的最小二乘解.pdf
- 21772.幾類線性約束矩陣不等式及其最小二乘問題
- 一類線性矩陣方程的特型極小范數(shù)最小二乘解.pdf
- 矩陣反問題的總體最小二乘解.pdf
- 42066.非負約束下幾類矩陣方程最小二乘解的迭代解法
評論
0/150
提交評論