版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、湘潭大學碩士學位論文基于生物激勵機制的算法研究姓名:彭琰申請學位級別:碩士專業(yè):控制理論與控制工程指導教師:鄭金華20070501II ABSTRACT The nature is our source of solving various problems. For hundreds of years, it is proved that it is a successful way that use solutions which
2、provided by biology to solve practical problems. Now biology simulation has been a part of computer science. Many optimization algorithms based on biology prompting appear. For example, Genetic Algorithm, Artificial Immu
3、ne Systems, Ant Colony Optimization, Particle Swarm Optimization, Artificial Neural Network, Culture Algorithm, etc. These algorithms learning from life phenomenon mimic the behavior, function and characteristic of life
4、system. Now they have been widely applied in many other areas and multi-objective optimization problems. Population-based genetic algorithm is a kind of random searching method using evolutionary theory and genetic theor
5、y. Particle Swarm Optimization Algorithm is such a new optimization method which is inspired by social behavior of bird flocking or fish schooling. It is a population-based, self-adaptive search optimization technique.
6、This paper gives the researchs on the above two algorithms in single-objective, and applys genetic algorithm to multi-objective optimizations. We improve the A Restricted Genetic Algorithm based on Ascending of Tangent P
7、lanes. Multi-parent fitness-weighted crossover is adopted to improve the algorithm’s ability of global search. The experiment indicates that the improved algorithm can solve more complicated multi-variant and multi-modal
8、 problems. Particle Swarm Optimization is combined with genetic operator (crossover and mutation). So it could escape from the local optima. Compared with standard Particle Swarm Optimization in four typical test functio
9、ns, results show that our algorithm has potential to find a better solution.In multi-objective optimization, we describe A Fast Genetic Multi-objective Algorithm based on Random Operator. Arena’s Principle (AP) is used t
10、o construct the nondominated set so quicken the running efficiency. Random Operator is used to construct next population. Experiment results in different dimensions indicate that it has a better distributing than NSGA2,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于EVA的薪酬激勵機制研究.pdf
- 基于公平偏好的激勵機制研究.pdf
- 基于激勵理論的企業(yè)激勵機制初探
- 激勵機制研究
- 基于CPN的BitTorrent協議激勵機制研究.pdf
- 基于eva的企業(yè)薪酬激勵機制研究
- 激勵機制
- 基于eva的企業(yè)薪酬激勵機制研究
- 基于績效管理的酒店激勵機制研究
- 基于公平偏好理論的激勵機制研究
- 激勵機制
- 基于EVA的股票期權激勵機制研究.pdf
- 基于委托代理的稅收激勵機制研究.pdf
- 基于知識創(chuàng)新的企業(yè)激勵機制研究.pdf
- 基于知識管理的組織激勵機制研究.pdf
- 基于績效管理的酒店激勵機制研究
- 質量激勵機制的研究.pdf
- 基于實例的高校教師激勵機制研究.pdf
- 基于勝任力的TS公司激勵機制研究.pdf
- 基于團隊協作的知識共享激勵機制研究.pdf
評論
0/150
提交評論