離散非線性微分-差分晶格系統(tǒng)的孤立波和局域模分析.pdf_第1頁
已閱讀1頁,還剩134頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、非線性現(xiàn)象在自然界中既普遍又重要。非線性科學(xué)是研究非線性現(xiàn)象共性的一門學(xué)問,它的研究主體是孤立子、混沌和分形。許多非線性問題的研究最終可歸結(jié)為非線性系統(tǒng)來描述。非線性微分一差分晶格系統(tǒng)的部分或全部空間變量是離散的,而通常時(shí)間變量是連續(xù)的,它是非線性系統(tǒng)中一類重要的系統(tǒng)。 非線性系統(tǒng)的精確解對研究相關(guān)的非線性問題非常重要。孤立子理論研究的一個(gè)主要內(nèi)容,就是尋求非線性系統(tǒng)的解,特別是孤立波解(包括精確解和數(shù)值解)。在過去的大約50年

2、中,非線性科學(xué)研究領(lǐng)域頗具特色的新成就之一就是創(chuàng)造了求非線性方程的解特別是孤波解的各種精巧方法。但相對于非線性偏微分方程,非線性微分一差分晶格孤子系統(tǒng)的求解起步較晚,成果也有局限。 本文結(jié)合孤立子理論的發(fā)展方向,圍繞非線性微分一差分晶格孤子系統(tǒng),以數(shù)學(xué)機(jī)械化思想為指導(dǎo),以計(jì)算機(jī)代數(shù)系統(tǒng)軟件和吳方法為工具,研究若干重要的離散非線性微分差分晶格系統(tǒng)的求解問題。提出和改進(jìn)了一系列求解該類系統(tǒng)的方法,得到了一些具有重要意義的離散非線性微

3、分差分晶格系統(tǒng)豐富的精確解。采用逆方法,建立長程關(guān)聯(lián)離散晶格模型。推廣連續(xù)Tbda晶格模型,得到多種精確孤立波解。 首先介紹了孤立子理論的發(fā)展歷程,微分一差分方程的研究狀況??偨Y(jié)和分析了目前人們常用的構(gòu)造精確解的方法。綜述了離散可積Toda晶格和氫鍵晶格的非線性特性。對經(jīng)典的Toda晶格孤立子作了詳細(xì)介紹,分析了Toda雙孤子的彈性碰撞。介紹了具次鄰耦合的非線性晶格中的幾種孤立子。 求離散非線性微分一差分晶格系統(tǒng)精確孤立

4、波解的直接方法開始于tanh函數(shù)展開法,它假設(shè)晶格系統(tǒng)的孤立波解可以表示為tanh雙曲正切函數(shù)的疊加和組合。本文推廣了tanh函數(shù)展開法,取組合函數(shù)滿足Riccati方程,且解的形式同時(shí)含有組合函數(shù)的正負(fù)冪次項(xiàng),提出修正的F展開法和廣義tanh-sech法;將橢圓函數(shù)展開法應(yīng)用到求非線性微分一差分晶格系統(tǒng)孤立波求解中,提出擴(kuò)展的Jacobi橢圓函數(shù)展開法;定義Fibonacci-sec函數(shù),提出了Fibonacci tan-sec展開法

5、。應(yīng)用這三種不同的方法以及擴(kuò)展的Sine-Gordon展開法研究了各類Tobda晶格、離散mKdv晶格,Hybrid晶格、Ablowitz-Ladik晶格和Volterra晶格等,得到了豐富的精確解。利用“輔助方程方法”,將雙曲函數(shù)展開法推廣應(yīng)用變系數(shù)的微分一差分晶格系統(tǒng),獲得了豐富的精確解。 研究次鄰耦合情形下的局域模是本文的另一方面。采用逆方法,建立具有次鄰耦合的長程關(guān)聯(lián)離散Klein-Gordon晶格模型,相對于僅有近鄰耦

6、合的離散晶格系統(tǒng),次鄰耦合晶格系統(tǒng)具有更多形式的N-格點(diǎn)cornpacton解,次鄰耦合系數(shù)影響N-格點(diǎn)解的穩(wěn)定性。離散呼吸解在耦合非線性離散Klein-Gordon晶格系統(tǒng)仍存在。通過數(shù)值模擬表明,次鄰耦合系統(tǒng)中寬孤子穩(wěn)定而窄孤立子不穩(wěn)定。 在非線性發(fā)展方程研究方面,考慮不僅有橫向、縱向的運(yùn)動(dòng),并且有相互耦合作用的情形,推廣了連續(xù)Toda晶格系統(tǒng)。假設(shè)橫向與縱向運(yùn)動(dòng)處于同一量級,應(yīng)用直接法得到連續(xù)Tbda晶格系統(tǒng)的compac

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論