復雜神經(jīng)網(wǎng)絡(luò)動力學機制及其應用研究.pdf_第1頁
已閱讀1頁,還剩146頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、由于神經(jīng)網(wǎng)絡(luò)在模式識別、圖像處理、優(yōu)化問題以及保密通信等領(lǐng)域的成功應用,復雜神經(jīng)網(wǎng)絡(luò)動力學行為的研究長期以來一直受系統(tǒng)和智能控制領(lǐng)域廣大學者的普遍關(guān)注。復雜神經(jīng)網(wǎng)絡(luò)動力學行為的研究不僅具有重要的理論意義,還能進一步提高復雜神經(jīng)網(wǎng)絡(luò)控制理論向工程領(lǐng)域應用的可能性,具有重要的實際意義。
   本論文基于Lyapunov泛函理論、自由權(quán)矩陣、Green公式、Leibniz-Newton公式、M矩陣理論等工具和脈沖控制、耦合方法、H(o

2、)lder不等式等方法,對復雜神經(jīng)網(wǎng)絡(luò)的動力學行為進行了深入、系統(tǒng)的研究,特別是對具有反應擴散的時滯神經(jīng)網(wǎng)絡(luò)模型的同步性、時滯T-S模糊神經(jīng)網(wǎng)絡(luò)系統(tǒng)的脈沖鎮(zhèn)定、具有反應擴散的時滯Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)系統(tǒng)的指數(shù)耗散性問題做了深入的研究,獲得了一些有意義的成果。
   本論文的主要工作有以下幾個方面:
   1.研究了時滯遞歸神經(jīng)網(wǎng)絡(luò)、帶分布時滯競爭神經(jīng)網(wǎng)絡(luò)系統(tǒng)平衡點的存在唯一性和全局漸近穩(wěn)定性,針對不同激

3、活函數(shù)獲得了時滯神經(jīng)網(wǎng)絡(luò)系統(tǒng)穩(wěn)定的充分條件。
   2.探討了含參數(shù)攝動的變時滯遞歸切換神經(jīng)網(wǎng)絡(luò)的周期解全局魯棒漸近穩(wěn)定性和具反應擴散的時滯Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)周期解的存在性和指數(shù)穩(wěn)定性問題,并在理論上對穩(wěn)定性判據(jù)給出了嚴格證明。特別是,在含參數(shù)攝動的變時滯遞歸切換神經(jīng)網(wǎng)絡(luò)的周期性分析中,由于剔除了一些苛刻的假設(shè)條件(如:變時滯導數(shù)小于1、激活函數(shù)有界或單調(diào)性等),大大降低了保守性。
   3.基于耦合

4、方法和驅(qū)動-響應同步原理分別分析了一類時滯神經(jīng)網(wǎng)絡(luò)的參數(shù)辨識與耦合同步和具有反應擴散的時滯神經(jīng)網(wǎng)絡(luò)系統(tǒng)同步特性,建立了系統(tǒng)狀態(tài)同步的若干充分性判據(jù),給出了數(shù)值仿真例子。尤其是,首次嘗試將混沌同步特性應用到具有反應擴散的時滯神經(jīng)網(wǎng)絡(luò)系統(tǒng)中。
   4.首次開展了針對一類同時含離散時滯和分布時滯的反應擴散Cohen-Grossberg神經(jīng)網(wǎng)絡(luò)的指數(shù)耗散性研究,采用擴散算子特性結(jié)合M矩陣性質(zhì)以及H(o)lder不等式,在摒棄激勵函數(shù)的

5、有界性、單調(diào)性、可微性和平均時滯∫∞0sKij(s)ds有界等限制條件下,獲得了其指數(shù)耗散性判據(jù),并給出了不變集和吸引集的空間位置。
   5.首次基于T-S模糊建模概念建立了一類時滯T-S模糊神經(jīng)網(wǎng)絡(luò)系統(tǒng),開展了脈沖鎮(zhèn)定設(shè)計,在設(shè)計中充分融入了固定脈沖和變脈沖的時間間隔控制思想,保證了所提出的設(shè)計方法具有較高的靈活性。同時,對具反應擴散的變時滯神經(jīng)網(wǎng)絡(luò)的自適應鎮(zhèn)定問題也進行了探討,通過狀態(tài)平移變換,將系統(tǒng)解的全局漸近穩(wěn)定性問題

6、轉(zhuǎn)變?yōu)槿绾卧O(shè)計控制器使得等價系統(tǒng)零解為全局漸近穩(wěn)定的問題,為該類系統(tǒng)的鎮(zhèn)定問題提供新的思路。
   6.結(jié)合一些應用實例(如二次型規(guī)劃問題、信號的保密通信、非線性系統(tǒng)的辨識等)對復雜神經(jīng)網(wǎng)絡(luò)系統(tǒng)動力學機制的理論分析結(jié)果有效性和重要性進行了說明。值得指出的是,將具有反應擴散神經(jīng)網(wǎng)絡(luò)的穩(wěn)定性結(jié)論應用到植物細胞滲流模型和水質(zhì)對流擴散模型的研究工作,尚未發(fā)現(xiàn)有此類相關(guān)研究工作問世。
   最后對本文的工作進行了總結(jié),提出了有待于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論