hjb方程在最優(yōu)投資策略中的應(yīng)用_第1頁
已閱讀1頁,還剩42頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、學(xué)校代碼: 10270 分類號: O29 學(xué)號:122200706碩 士 學(xué) 位 論 文論 文 題 目 HJB方程在最優(yōu)投資策略中的應(yīng)用學(xué) 院 數(shù)理學(xué)院專 業(yè) 應(yīng)用數(shù)學(xué)研 究 方 向 金融數(shù)學(xué)研 究 生 姓 名 周 翠指 導(dǎo) 教 師 張 寄 洲 教 授完 成 日 期 二零一五年三月萬方數(shù)據(jù)AbstractIn the research domain of portfolio and risk management, some optim

2、al and control problemsare involved. Due to the randomness of the environment, these control problems are characterizedby stochastic optimal control model. Generally, in these control models, the price of equities,assets

3、 of firms and other market variables are taken as state variables. The portfolio ratio andstopping time of trade are considered as control variables. The objective of control is to maximizethe total return or minimize th

4、e risk of investment. The main method to solve the optimal controlproblem is the dynamic programming principle(DPP). And a Hamilton-Jacobi-Bellman(HJB) canbe derived by DPP. In this article, two kinds of control problems

5、 are studied. Under the back-ground of insurance company, in the case that the investment portfolio contains European calloptions, and the objective of control is to maximize the total return. The other one, under thebac

6、kground of network lending, assuming the firm of P2P invest to a bond of credit risk, and theobjective of control is to maximize the risk of investment. These two problems, the closed-formsolutions of the HJB Equation ar

7、e both solved, and the verification theorem is also proved. Final-ly, the influence of parameters on the solution are analyzed to illustrate the results. This article isdivided into five chapters.The first chapter illust

8、rates the research background and the research methods and status indomestic and overseas. In chapter two, we simply reviewed the dynamic programming principleand the multidimensional It? o formula, which are the main re

9、search methods and theoretical basisthroughout this article.In chapter three, optimal investment and proportional reinsurance strategy with options isstudied. In the perspective of insurance company, we consider the opti

10、mal investment and propor-tional reinsurance strategy in the case that the investment portfolio contains European call optionsunder the Black-Scholes model. By using stochastic control method, the utility maximizationmod

11、el and the corresponding HJB equation are obtained. What’s more, the closed-form solutionsof the HJB Equation is solved, and the verification theorem is also proved. Finally, the influenceof parameters on the solution is

12、 analyzed to illustrate the result.In chapter four, we measure the risk of P2P firm. In the view of P2P firm, we discuss theoptimal investment strategy in the case that P2P invest to risk equities and a bond of credit ri

13、sk.The objective is to minimize the risk on the condition that the terminal wealth is a constant. Tosolve this problem, the mean-variance model is used. The mean - variance problem can be seenas an optimal control proble

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論