版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、3非線性方程是對自然規(guī)律的近似描述,而數(shù)學(xué)、自然科學(xué)和工程技術(shù)領(lǐng)域中的許多問題都可以歸結(jié)為非線性積分方程問題,但是,只有極少部分的非線性問題才有解析解,絕大部分非線性問題無法獲得精確的解析解。因此求解非線性積分方程近似解顯得非常重要,并具有重要的實際意義。
近幾十年來,學(xué)者們提出了很多種求解非線性積分方程的數(shù)值方法,如Adomain分解法、投影法、變分迭代法、泰勒展開法、勒讓德小波方法、同倫攝動法等等。
同倫攝動法是
2、何吉歡教授于1998年首次提出的,該方法結(jié)合了傳統(tǒng)的攝動方法及同倫技術(shù)。大多數(shù)情況下,應(yīng)用該方法可以得到方程(組)快速收斂的級數(shù)解,通常級數(shù)解的少數(shù)幾項就能很好的逼近真解,這種方法已經(jīng)應(yīng)用到很多領(lǐng)域。但是對同倫攝動法的研究存在不足:(1)由于算子是否為壓縮算子不容易驗證,因此到目前為止,還沒能對其收斂性給出嚴(yán)格的證明。只是有人指出,可以使用壓縮影像原理證明方法的收斂性。(2)對某些強非線性問題,同倫攝動法不收斂。因此本文的目的是改進同倫
3、攝動法,使其在求解強非線性問題時依然收斂,并給出嚴(yán)格的收斂性證明。
本文的主要研究內(nèi)容如下:
(1)介紹同倫攝動法并對其做出改進,以求解第二類二維 Fredholm積分方程;
(2)針對同倫攝動法求解強非線性方程不收斂的缺點,提出基于區(qū)間劃分的改進算法,并在C空間中利用M判別法給出了改進算法嚴(yán)格的收斂性證明,同時得到了近似解的誤差估計;
(3)應(yīng)用直接法與改進的同倫攝動法相結(jié)合求解另一種形式的非線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 改進的同倫攝動法求解非線性積分方程及其收斂性證明.pdf
- 40760.改進的同倫攝動法求解非線性積分方程組及收斂性分析
- 非線性算子同倫微分收斂性分析.pdf
- 求解非線性不適定問題的同倫攝動法及應(yīng)用研究.pdf
- 非線性方程求解的若干迭代方法研究及其收斂性分析.pdf
- 40764.分片同倫攝動法求解非線性二階常微分方程邊值問題
- 3164.求解非線性方程的數(shù)值方法的收斂性
- 求解非線性方程的若干非精確迭代法的收斂性分析.pdf
- 求解非線性方程的某些高階迭代方法的收斂性分析.pdf
- 新的非線性共軛梯度法及其收斂性.pdf
- 非線性共軛梯度法的收斂性.pdf
- 48177.非線性共軛梯度法及其收斂性
- 13592.同倫分析法求解非線性偏微分方程
- 非線性共軛梯度法及其全局收斂性的研究.pdf
- 非線性共軛梯度法收斂性的研究.pdf
- 用同倫攝動法求解若干初邊值問題.pdf
- 解非線性方程的高階迭代算法及其收斂性分析.pdf
- 應(yīng)用再生核與同倫攝動方法求解兩類積分微分方程.pdf
- 非線性Volterra-Stieltjes積分方程與Banach空間中隨機乘積的收斂性.pdf
- 非線性共軛梯度法及收斂性研究.pdf
評論
0/150
提交評論